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Abstract 

For seismically active mines, the analysis of the mining induced seismicity forms an important part of the 
geotechnical risk management and design process. However, it appears that the quality of seismic data is 
seldom scrutinised, resulting in lower quality databases and, therefore, unreliable results. These results are 
used to make decisions affecting both the safety and productivity of mine sites. For this reason assessing 
and quantifying the database quality is important. 

Many mine sites rely on seismic service providers to help maintain the seismic system and to provide good 
quality seismic data, which they will use in seismic analysis techniques. The mine personnel generally 
assume good quality data and do not have the tools or expertise to evaluate the integrity of a database. In 
our experience, data quality problems are experienced by most mines, to some degree, with the quality at 
some mines having a serious impact on decision making. 

This paper presents a method for the assessment of seismic data quality. This method highlights the areas 
in the database that is most contaminated with bad data and thus provides a first step towards rectifying 
the problem. Quality indices are also developed to objectively quantify the database quality. The methods 
presented in this paper are work in progress on which the authors will improve in the near future. 

1 Introduction 

Seismic data analyses are of a critical importance in geotechnical design and risk management and affect 
specific tasks like support design and re-entry analysis. Errors in the database will adversely affect the 
analysis results and decision making, which may lead to unsafe practices or loss in production. 

McRae (1964) explains that the quality of the input data affects the quality of the output data, referred to 
as GIGO (garbage in, garbage out). Redman (1998) found that when enterprises use poor data quality, it 
leads to an increase in operational costs, inefficiency in decision making and a reduced ability to make and 
execute strategies. The importance of good data quality practices is widely accepted, but it is seldom given 
the time or the priority needed to ensure good analysis results. Tayi and Ballou (1998) argue that this is due 
to the complexity of factors influencing databases and the ambiguity of what a good quality database is. 

Many mine sites rely on seismic service providers to help maintain the seismic system and to provide good 
quality seismic data which they will use in seismic analysis techniques such as those discussed in Wesseloo 
(2014), Wesseloo et al. (2014), Wesseloo (2013), Disley (2014), Van Aswegen et al. (2005) and Scheepers et 
al. (2012). An investigation of seismic data quality from several mine sites reveals that poor data quality is 
predominantly due to: 

1. Noise contaminating the database. Noise sources are often a result of drilling, blasting, orepasses, 
crushers or more general cultural noise as a result of mining activities. 

2. Inconsistent source parameter calculations. 

As the problem of poor data quality becomes increasingly difficult to manage and rectify, the longer it is 
left unchecked, the need to address data quality issues as soon as possible becomes more pressing.  
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In addition to highlighting the concerns of data quality, this paper introduces two quality indices. These 
indexes are used to quantify the integrity of data as a single number, such that a user could easily 
distinguish between a good and bad dataset. 

2 Current state of seismic data quality 

The data quality application (App) developed for the mXrap software is useful for highlighting the most 
prominent of these database artefacts (Harris & Wesseloo 2015). Some examples of poor database 
artefacts for several sites are shown in Figure 1. 

  

(a) (b) 

  

(c) (d) 

Figure 1 Typical artefacts seen in seismic databases: (a) changes in s-wave corner-
frequency ranges are related to changes in seismic parameter calculations; (b) 
linear artefacts seen due to static stress drop inconsistencies; (c) linear 
artefacts seen due to inconsistencies in source radius calculations; and  
(d) drilling noise 
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Figure 1(a) illustrates how the ranges of the s-wave corner frequency abruptly changes numerous times 
over a span of several years. These changes seem to correlate in time to software upgrades or adjustments 
to the hardware configuration. Software updates sometimes result in such changes in source parameters 
as a result of updated algorithms for parameter calculations. Figures 1(b) and (c) shows linear artefacts 
caused by errors in static stress drop and corner frequency calculations. It is also possible to identify noise 
in a database if it is removed from the main population of events, (Figure 1(d)). 

Eight mine site databases (from Australia, Canada, USA and Sweden) were investigated in this study. All of 
these databases show evidence of at least one or more of these artefacts. These artefacts are not related 
to any specific seismic system. The mXrap seismic data quality app highlights some of the more prominent 
and more obvious issues; it does not detect more subtle data quality problems and it does not quantify the 
database quality (Morkel & Wesseloo, 2015). 

3  Method for highlighting anomalies in the data due to problems in 
data quality  

The method consists of a statistical evaluation of the parameters in the database, which is used to generate 
a model of expected density distribution for different seismic source parameters. This is called the baseline 
model. The baseline model of parameter density is then compared to the measured parameter density to 
highlight anomalies. These anomalies are then investigated. 

The method used to investigate the quality of a database is conditional to how well the model can predict 
the macro-behaviour in the database. The assumption is that the model is clean from noise (it does not 
contain local inconsistencies) and, therefore, will highlight areas within unexpected data points or lack 
thereof. If the model does not describe the database well enough, it can then be adjusted to include the 
additional database characteristic. 

3.1  Set-up of the baseline model 

The baseline model is determined by finding the density for each grid cell based on the distribution of the 
parameters investigated. The distributions are found from the dataset. For the log(energy)-log(moment) 
chart, the log(moment) distribution is determined from the slope of the frequency-log(moment) chart. It is 
assumed it follows a power-law behaviour. The second distribution, apparent stress, is assumed to be a log 
normal distribution. Apparent stress is used instead of energy, as it describes the spread of data in the 
log(energy)-log(moment) chart. The energy is then determined from Mendecki et al. (1999): 

 𝐸𝑛𝑒𝑟𝑔𝑦 =
𝐴𝑆 ∙ 𝑀0

 𝐺
 (1) 

where:  

AS = apparent stress (Pa). 

Mo = total seismic moment (Nm). 

G = shear modulus of the rock mass (Pa). 

In Equation 1, the shear modulus simply acts as a scaling constant and the true value is irrelevant for this 
work as long as the same value is used in building the model as is used in the database. An industry default 
of 30 GPa is generally used. 

To illustrate how the model compares to the original database, a grid-calculation of density distribution is 
done for the apparent stress versus log(moment) and log(energy) versus log(moment). The grid used for 
this example has a grid spacing of 0.01 units and extends to include the original database. The model is 
based on the distribution of moment, apparent stress and energy and, therefore, the density distribution 
for each grid point is the combination of the density distribution for the two parameters in question. 

In Figure 2, the results for the baseline model (shading) overlays the original database (dots). The baseline 
model is filtered to exclude very small densities. In Figure 2(a), some events occur outside the baseline 
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model boundaries. These are events at extreme values that would occur at a low density distribution. The 
same can be seen in Figure 2(b); however, in this case, many of those events are due to blasts, which would 
not be described by the baseline model. 

  

(a) 

 

(b) 

Figure 2 Density distribution based on the model (contours) is overlayed onto the 
original event database (grey dots): (a) the apparent stress versus 
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log(moment) plot for the model and the database; (b) the log(energy) versus 
log(moment) plot for the model and the database 

3.2 Highlighting data anomalies 

Anomalies in the database are highlighted by comparing the density distribution of the baseline model with 
the density distribution of the database. In Figure 3 the density distribution of a database for the 
log(energy) versus log(moment) chart is shown. 

 

Figure 3 Density distribution for a database. Dark colours indicate higher probabilities 
and lighter colours lower probabilities 

To describe the difference between the database and the baseline model, the density difference for each 
grid point is calculated. Density difference is defined as: 

 𝑫𝑫𝒊𝒇𝒇 =  
(𝑫𝒅𝒂𝒕𝒂𝒃𝒂𝒔𝒆−𝑫𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆)/2

(𝑫𝒅𝒂𝒕𝒂𝒃𝒂𝒔𝒆+𝑫𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆)/2
,  (2) 

Ddatabase is the database density and Dbaseline is the expected density of the baseline model. The equation will 
yield values of 0 when the measure and expected densities are the same. The density difference will 
approach -1 when the database density is approaching zero or is much smaller than the baseline density, 
Dbaseline. The density difference will approach 1 when Ddatabase is much larger than Dbaseline. To ensure the 
fringe events are ignored and do not skew results, a cut-off limit is applied to exclude areas with very low 
data density. 

Figure 4 is an illustration of the density difference between the baseline model and the database. The 
light-grey grid points indicate areas with less than 30% difference between model and database; the 
dark-grey grid points indicate where there are more events in the database than predicted by the baseline 
model; and the grey grid points indicate where there is a lack of events in the database. The black dots 
show the events from the database. Anomalies in the database caused by noise, blasts and other database 
inconsistencies would coincide with the grey and dark-grey areas. 
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Figure 4 Illustration of how the baseline model is used to highlight inconsistencies in 
the database 

The parameters used in the model are calculated from the original database and, therefore, might have 
quality issues which will affect the model. However, by eliminating noise from the database, the input 
parameter quality is better and the model is improved. After each cycle of removing noise in the database, 
the model must be recalculated and the process repeated. 

3.3 Case study 

In this section, a case study is presented to illustrate how the methods described previously could be used 
to identify quality problems. The mine site used in this example has a good quality database. An analysis in 
mXrap, similar to what was done in Section 2, shows that there are no linear artefacts in the database. 
There are, however, range changes in the s-wave corner frequency over time chart.  

Going forward, focus will be on the log(energy) versus log(moment) chart, as these two parameters are 
determined independently and, therefore, would be best suited for this kind of analysis. In Figure 5, three 
database inconsistencies are highlighted by the density difference contours. The first of these, Figure 5(a), 
indicates an area in the middle of the plot where the database has less events than predicted by the model. 
A further investigation reveals that there are two populations of events in the database. Population 1 is 
mainly from events of a higher frequency, mostly during the time the s-wave upper corner frequency is 
upward shifted at the beginning of 2009. Population 2 seems to be mostly a combination of the rest of the 
database. Figure 5(b) shows that the high relative energy events with moderate sized moments are due to 
the high s-wave corner frequencies from start of 2009, similar to what was seen in Figure 5(a). From 
Figure 5(c) the events of relative high energy and high moment are due to an overestimation of the 
apparent stress values at low corner frequencies, described by Mendecki (2013). 
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(a)

 

(b)

 

(c) 

Figure 5 Several inconsistencies in the database are visually highlighted from the 
density difference contours in the log(energy) versus log(moment) plot 

The investigation indicates that the site in question has two dominant reasons for the poor quality of data. 
The inconsistencies in source parameter calculations should be easily fixed by back processing the 
database. Site personnel should, however, take note of the problem and how it affects the interpretation 
of analyses. 
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Note: at the time of writing of this paper, back processing has not been performed and, as a result, the 
improvement resulting from the back processing is still unknown.  

4 Quality index 

The previous section illustrated how density difference is used to find anomalies in the database which 
highlight inconsistencies and noise contamination in the database. It, however, does not quantify the 
extent of poor data quality. This section introduces two indices aimed at quantifying the overall quality of 
the database.  

The first index aimed at quantifying the integrity of data is the baseline index (BLI). It describes the average 
correlation between the baseline model and the database density. It has a value between 0-10, where 0 
indicates no correlation and 10 indicates complete correlation. The BLI is calculated from: 

 𝐵𝐿𝐼 =
∫ |

𝐷𝑑𝑏−𝐷𝑏𝑙
𝐷𝑑𝑏+𝐷𝑏𝑙

|
𝐴

𝐴
∙ 10, (3) 

where: 

Ddb = database density distribution. 

Dbl = baseline density distribution. 

A = area of integration. 

The second of these indices, the percentage correlation index (PCI), quantifies the percentage of area 
which has an acceptable density difference. PCI is defined as: 

 𝑃𝐶𝐼 = ∫ [|
𝐷𝑑𝑏−𝐷𝑏𝑙

𝐷𝑑𝑏+𝐷𝑏𝑙
| ∙ 100% < ∆]

𝐴
, (4) 

where: 

Ddb = database density distribution. 

Dbl = baseline density distribution. 

A = area of integration. 

Δ = acceptable data quality tolerance range. 

Several other mine sites have been investigated to determine typical PCI and BLI values, as well as giving 
guidance on the general sources of data quality problems. Figure 6 shows the density difference for each of 
the log(energy)-log(moment) plots, as well as the PCI and BLI values for each site. A data quality tolerance 
range (Δ) of 30% was used to determine the PCI values.  

For the case study site, the calculated values for PCI is 76% and a BLI value of 7.9. None of the other sites 
have a better PCI or BLI value compared to what was found for the case study site. This is concerning as 
several data artefacts could be identified from that site. Of the eight mines investigated in this study, only 
one had a PCI greater than 60%, six had values between 50 and 60% and one had a value less than 40%. 
Three mines had BLI values of 7 or higher, three had values between 6 and 7, and two had values below 6.  

This study confirms the statement in Section 2 that data quality is a widespread problem for seismically 
active mines. If the best site, the case study site, has several artefacts contaminating the data, the rest 
must be similar or worse. The PCI and BLI values are useful indicators of the extent of the problem. Based 
on the results, our early suggestion is BLI values of above 9.0 and PCI values of more than 90% are good. 
A further study is still required to more formally define these threshold values. 
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Figure 6 The density difference contours for several different mine sites. For each of 
the plots, the relevant PCI and BLI values are shown in the top left corner 

The most prominent source of poor data quality was found to be: 

 Inconsistent calculation of source parameters. 

 Noise in the database (blasting, crushers, orepasses). 

5 Towards good quality data 

In Sections 3 and 4 we presented a methodology for investigating and quantifying the quality of mining 
induced seismic data. The baseline model relies on the statistical distribution of parameters in the 
database, which includes poor quality data. Improvement in the data quality will therefore also lead to an 
improvement in the baseline model and BLI and PCI values.  

BLI=5.6 

PCI=39% 

BLI=6.8 

PCI=56% 

BLI=7.9 

PCI=76% 

BLI=6.7 

PCI=57% 

BLI=7.1 

PCI=57% 

BLI=6.5 

PCI=51% 

BLI=7.0 

PCI=55% 

BLI=5.8 

PCI=57% 
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To get to a database with good quality data these methods need to be repeated several times, as 
illustrated in Figure 7. The input data determines the values of the input parameters used when building 
the baseline model. From the baseline model and the database, the BLI and PCI values are calculated. If 
they indicate good quality data, the user is ready to start the data analysis phase of the project. However, if 
these values are not acceptable the density difference plot is used to identify areas of concern and 
communicate those details to the seismic service provider. The seismic service provider investigates and if 
possible corrects the problem and sends the site an updated database. The user then repeats the process 
until he gets acceptable index values. 

 

Figure 7 The data quality cycle 

There will be instances where the data quality cannot easily be improved, e.g. where orepass noise 
contaminates the database and cannot be separated from real seismic events overlapping in space and 
time. The presented methodology will highlight such problems but further research will be required to 
develop robust and reliable methods for cleaning the database in such cases. 

6 Conclusion 

Seismic data quality is a widespread problem in the industry and is independent of the type of systems 
used. Comparing the data density distribution in the energy-moment space to a baseline model of 
expected data density, provides a method for highlighting anomalies in a database caused by 
inconsistencies or bad data. The BLI and PCI further quantify the overall difference between the expected 
and measured data density and provide an indication of the data quality. 

The methods presented here not only highlight areas of inconsistencies and bad data, but the PCI and BLI 
values provide a way to quantify the quality of a database. We recommend that sites should aim to achieve 
a BLI value greater than 9.0 and a PCI value greater than 90%; further work is, however, necessary to 
formalise our recommendations.  

From the investigations performed on the eight sites used in this study, the most prominent problem 
appears to be inconsistent source parameter calculations. By back processing all seismic data and ensuring 
the same source parameter algorithms are used, the data quality is likely to be improved. 
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