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Abstract

Identifying, understanding, communicating, and managing potential and actual risks associated with mine
rock stockpiles (MRSs) closure are effective tools to guide technical studies, inform management decisions
and facilitate cost minimisation for closure. Okane Consultants (Okane) Pty. Ltd. have implemented these
tools at an iconic Pilbara mine site for nearly three decades. Historic dumping practices (<1990s) at the site
resulted in MRS structures that did not limit sulphide mineral oxidation, as interactions between its principal
constituents, mainly oxygen and to a lesser extent water were not controlled. Evidence of potentially acid
forming (PAF) material reactivity was recognised early resulting in the identification of potential risks of high
internal temperatures and acid metalliferous drainage (AMD) thus guiding preliminary technical studies.

Preliminary studies included MRS drilling programs to quantify the structure, reactivity and hydrology of
MRSs. During these programs MRSs were instrumented with gas and moisture sensors to quantify MRS
reactivity and moisture conditions in response to environmental factors over time. Instrumented cover
systems were also tested as a means of limiting oxygen ingress and net percolation (NP). These investigations
led to significant advancements in the understanding of the MRS conditions, construction, sulphide oxidation,
and associated risks.

With closure of a potentially reactive MRS scheduled within five years (year 2023) learnings from preliminary
investigations were used to inform managers during a risk workshop focusing on MRS reshaping and the
construction of a cover system to limit internal reactivity and AMD. Key workshop outcomes were the need
to further quantify the moisture status of the MRS to determine its propensity toward AMD, and the
identification that vegetation will be key to limiting NP into the final landform through transpiration thus
limiting AMD. In this case study risk was effectively identified and communicated to provide a MRS closure
solution specific to the company’s closure criteria and risk profile ultimately resulting in long-term cost
reduction for closure.

Keywords: waste rock dump, risk, mine closure

1 Setting the scene

Mining tenements (live and pending) cover 91.8% of Western Australia’s Pilbara region (Environmental
Protection Authority 2014). Western Australia iron ore sales attained a record 826 million tonnes in
2017-2018, with royalty revenue of approximately AUD 4.48 billion paid to the Australian government
(Department of Mines and Petroleum 2018). However, the economic ore being sold to external markets
result in large amounts of uneconomic low-grade ore and non-mineralised rock placed into large mine rock
stockpiles (MRSs) on the domestic land surface. The formation of MRSs creates new landforms that can pose
substantial environmental and public health risks to local and downstream receptors if not properly
constructed, managed, and rehabilitated.

Historically little attention was given to the characterisation, placement, and construction of MRSs. The level
of understanding pertaining to MRSs and its internal processes coupled with less stringent historical
regulatory frameworks has in many cases resulted in legacy issues such as acid and metalliferous drainage
(AMD), surface erosion, gas release, internal heating, and combustion of waste materials (Commonwealth of
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Australia 2019). In some instances, legacy issues have resulted in significant environmental and social impacts
to downstream receptors (Singh 1999; Commonwealth of Australia 2019). Currently the public generally
accept mining as an essential industry, but that it tends to be in opposition to the preservation of natural
environments. In many instances, this public perception is due to historical mining practices that did not
always consider environmental risks and impacts as part of their mining and processing operations
(Singh 1999). Therefore, companies operating today that hold legacy sites of environmental and social
concern are highly motivated to lower their risk profile and increase their social licence to operate by
effectively identifying, communicating, and managing potential and actual risks associated with legacy MRSs.
This case study highlights the proactive steps taken by the management team of an iconic Pilbara mine site
(The Mine) from identification through to management of the risks associated with a historic MRS.

2 What were the risks and how were they understood?

Knowledge pertaining to AMD management was limited prior to the 1990s resulting in MRS structures that
did not limit sulphide mineral oxidation at many sites globally, and at The Mine. Interactions between
principal constituents of AMD, mainly sulphide minerals in waste rock, oxygen and to a lesser extent water,
were not controlled resulting in AMD drainage (Figure 1). These were characterised by a lack of AMD
prediction through geochemical testing, historic dumping practices, and lack of engineering controls to limit
oxygen ingress and water percolation.
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Figure 1 Generalised acid metalliferous drainage (AMD) formation within a mine rock stockpile (MRS)

2.1 AMD prediction and historical dumping practices

At The Mine several years of end tipped co-mingled finer and coarser material from high tip heads resulted
in segregation of waste rock and the formation of a significant coarser grained rubble layer at the base of the
legacy MRS in question (Figure 2). Little record of spatial data of dumped potentially acid forming (PAF) and
non-acid forming (NAF) material, and dumping history existed. Evidence of waste rock scheduling to manage
the oxidation of PAF waste coming from the pit was not found.
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Segregation of waste rock provided flow paths for advective gas movement into the MRS. The ingress of
oxygen resulted in the oxidation of sulphide baring waste minerals producing acidity within the MRS. After
large rainfall events the acidity was mobilised through net percolation (NP) of water, the visualised as AMD
seepage emanating from the toe of the MRS. Heating within the MRS was also apparent as gas/vapour
discharge was observed at the surface.

Figure 2 Grain size segregation associated with end-tipping from approximately 120 m high (Cavanagh et
al. 2018)

211 Understanding the risk

The identification of the AMD and internal heating risks from the legacy MRS at The Mine prompted the
inception of preliminary studies to fully understand the risks and their root causes. Okane were engaged to
undertake studies to quantify the structure, reactivity and hydrology of the legacy MRS to recommend and
design effective management measures to control AMD.

A drilling program to quantify the structure, reactivity and hydrology followed. The program set out to
characterise geochemical and physical nature of material within the MRS through a material characterisation
and analysis program at Okane’s Perth Laboratory. The objective of the characterisation program was to build
an understanding of material characteristics within the MRS in order to understand and model its reactivity.
The characterisation program occurred concurrent to a downhole MRS instrumentation and monitoring
program which resulted in the installation of several sensor types to monitor In situ moisture conditions,
oxygen concentration, and temperature (Figure 3). The objective of the instrumentation and monitoring
program was to build an understanding of internal hydrological properties, oxygen concentrations, and
temperatures. Coupling internal condition data with the spatial data from the material characterisation
program allowed for evaluation of in situ PAF waste materials control on AMD production, and potential
discharge to the surrounding environment.
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Figure 3 Typical downhole mine rock stockpiles installation (Pearce & Barteaux 2014)

Results from the material characterisation program and internal dump conditions substantially increased the
understanding of internal MRS controls on AMD production. A summary of the key findings from these

investigations are presented in Table 1.
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After the initial identification of issues related to AMD prediction and historic dumping practices Okane was
able to work with The Mine to effectively quantify and understand the associated risks. Study results at the
site highlighted the importance of effective PAF waste management and scheduling to manage oxidation. It
also highlighted the need to design and construct MRSs to prevent the advection of oxygen as a source
control for AMD. Moreover, the analysis of internal dump moisture conditions provided valuable insights into
the magnitude and timing of AMD seepage, which can in turn be used to inform AMD management decisions
translating into long-term cost savings.

2.2 Lack of mine rock stockpiles engineering controls for oxygen and water

PAF scheduling and management, and progressive construction and rehabilitation currently being employed
at The Mine were not historically in effect like most historic mines. Prior to 1995 it was assumed that AMD
would not be an issue at The Mine due to the arid conditions and high potential evaporation resulting in no
requirements for engineered controls on NP and oxygen ingress. However, following heavy rainfall in 1995
and subsequent AMD seepage, it was determined that engineering controls to reduce NP and oxygen ingress
was required.

The historic lack of PAF waste management and scheduling resulted in an overall lack of engineering controls
to limit oxygen ingress and NP at the site. Large tip heads and lift heights resulted in lower compaction and
longer exposure time of PAF and NAF lifts resulting higher rates of oxygen ingress and NP. Without
engineering controls such as cover systems the exposed exterior of the MRS resulted in oxidation of sulphide
baring waste minerals producing acidity within the MRS. Exposure of the MRS surfaces also resulted in
increased NP leading to AMD discharges at the base of the structure.

2.2.1 Understanding the risk

Okane were engaged to provide guidance on engineering controls to manage AMD generation and seepage
from the legacy MRS at The Mine. The Mine’s base assumption for MRS rehabilitation was the application of
store-and-release cover systems across its MRSs for the purpose of managing AMD risks. Beginning in 1998
several instrumented cover systems of various thicknesses and material types, and vegetated test plots were
constructed and monitored to measure their effectiveness in managing AMD (Figure 4).

Cover systems were instrumented with suction and volumetric water content sensors to quantify soil
moisture conditions and NP, a meteorological monitoring station was also installed. Over time refinement of
the cover system conceptual model resulted in construction of other instrumented cover system field trials
in 2002 with the addition of oxygen sensors. These cover trials have resulted in a 20-year continuous dataset,
arguably one of the longest and largest cover system datasets of its kind.
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Figure 4 Cover system configuration constructed in 1995

844 Mine Closure 2019, Perth, Australia



Waste rock piles

Building off learnings from previous studies undertaken at The Mine since 1997 (e.g. material
characterisation and field performance monitoring), cover system numerical modelling was completed to
inform The Mine on the optimal approach and/or conditions to minimise risk of PAF material placed in ex-pit
MRSs (both top and sloping surfaces). The integration of field studies and numerical modelling focused on
enhanced management of gas and water ingress to PAF material within MRSs, as well as the fate of any salts
near the surface of the MRSs that had the potential to adversely impact closure performance.

The conceptual model of cover system performance and NP requirements used in the modelling scenarios
were refined using the International Network for Acid Prevention (INAP) (2017) cover system design
framework hierarchy for oxygen and moisture control (Figure 5). Steps within the hierarchy represent site
attributes (climate, geology/materials, or topography) that produce or constrain cover system design
alternatives to achieve performance objectives (INAP 2017). The climate filter allowed for the identification
of dominant physical processes that could be exploited and/or enhanced at The Mine. Therefore, the cover
system design alternatives were modified to suit the climatic setting. The Koppen-Geiger (Peel et al. 2007)
classification system helps characterise precipitation and temperature on a seasonal and annual basis. Both
parameters were integral to understanding key physical processes that control water balance and
consequently influence NP and oxygen ingress.

Completing the framework provided increased confidence that store-and-release cover alternatives relying
on materials of sufficient thickness and texture would successfully limit NP, oxygen, and salt rise at The Mine.
After all design filters within the INAP (2017) framework were completed, the five cover system alternatives
were modelled while integrating the 20-year dataset and the conceptual understanding of the site to provide
increase confidence that the risk would be successfully managed.

ElknMEERI NG EASE

Figure 5 Conceptual cover system design framework portraying four filters for climate, hydrogeology,
materials, and vegetation (INAP 2017)
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The instrumented cover systems and modelling studies drastically increased the understanding of cover
system controls on AMD production and mobilisation at The Mine. A summary of the key findings from these
investigations are presented in Table 2.

Table2 Summary of the key findings from cover system performance monitoring and cover system
alternatives monitoring

Study Learnings

¢ NP is occurring which results deeper water recharge within the cover system and
mine rock stockpile (MRS).

e Water recharge within the cover and MRS increases during the wet-season, after
large rainfall events, and for overall wetter climate years.

¢ The majority of near surface moisture cycling is occurring within the upper 3 m to

Cover system 5 m of the cover surface, while NP or recharge is occurring bellow 5 m.

performance

monitoring ¢ A reduction in NP rate due to placement of a cover system will increase the MRSs

‘time to wet up’ and decrease the overall seepage rates.

* The Mine experiences challenges with rehabilitation and vegetation regrowth on
MRS surfaces.

» Revegetation of MRS surfaces are strongly related to near surface moisture
availability.

* NP (deep MRS recharge) could be reduced from a bare surface NP rate of

approximately 35% to an NP rate of approximately 10 % of average annual rainfall

for all cover alternatives with 50 % plant cover, 80% of plant roots within the first
Cover system 0.5 m of the cover, a max rooting depths of 2 m, and plant water extraction
alternatives occurring from 100 kPa to 1,500 kPa.

modelling e A 5 m cover consisting of two 2.5 m paddock dumped NAF waste layers of material
with sufficient water holding capacity to support vegetation growth underlain by a
5 m NAF waste blend (fine and coarse) was sufficient to limit NP, oxygen ingress,
and salt rise at The Mine located in the arid Pilbara region of Western Australia.

After the initial identification of issues related to engineering controls on oxygen and water entry into the
MRS in question, Okane was able to work with The Mine to effectively quantify and understand the
mechanisms driving risk. Study results at the site highlighted the need to design and construct effective
vegetated cover systems to prevent oxygen ingress as a source control for AMD, and limit NP to control
mobilisation of acidity already within the MRS. Moreover, the analysis of cover system performance provided
valuable insights into the magnitude, timing, and concertation of potential AMD seepage. Effectively
communicating this information to management teams can in turn be used to inform AMD management
decisions translating into long-term cost savings.

3 Communicating the risk

Effective risk management is core to any mining company’s operation, and in most cases, this can only be
achieved through effective risk communication. Many risk frameworks exist (e.g. Bow-Ties, SWIFT, Delphi,
HAZOP), however; few are directly applicable to the closure of MRSs, consider offsite impacts, and regulatory
requirements applicable to engineered and natural systems, incorporate risk profile flexibility, are
multidisciplinary, and integrate a base case design or understanding that can be refined and improved. Okane
has found the use of failure modes and effects analysis (FMEA) to be the most comprehensive and efficient
framework to delivering MRS closure guidance and long-term closure cost reduction.
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An FMEA is a top-down / expert approach to risk identification, quantification, mitigation, identification and
prioritisation. Its value and effectiveness depend on having experts with the appropriate knowledge and
experience to participate in the evaluation during which failure modes are identified, risks estimated, and
appropriate mitigation measures proposed. It is therefore essential that the evaluation team include
representatives who understand the site-specifics, which include geotechnical, hydrological and environmental
conditions. In addition, it is important that the sites’ context is considered in terms of on and offsite impacts,
and regulatory requirements applicable to the engineered and natural systems and their surroundings.

An FMEA provides evaluators with the ability to perform a systematic and comprehensive evaluation of
potential failure modes of the design / plan in order to identify potential hazards. The FMEA can also be used
to evaluate potential for failures in the site’s rehabilitation that could result in environmental impacts, legal
and other obligations, effects to reputation with stakeholders, and human health and safety concerns. A risk
profile can be developed for each of these concern areas. Once the failure modes and measures with the
highest risk have been identified, it is possible to consider mitigation or alternative designs to reduce risks.
FMEAs are therefore an essential part of any risk- and liability-reduction program.

The environmental community regularly uses this process for conducting environmental risk assessments.
Engineers use this type of method to assess the risk of engineered systems. Mining companies can use this
assessment method to evaluate the risk that their rehabilitation and closure plans impose on the surrounding
environment, workers and the public.

3.1 Scope and objectives setting

In this case study, at the time of the FMEA The Mine’s life-of-mine (LOM) was 30 years, while closure of the
MRS in questions was scheduled within five years. The Mine already had a conceptual landform design (the
base case), cover system design (discussed in previous sections) and has an obligation to meet its closure
criteria of safe, stable, non-polluting, and re-vegetated to species resembling the surrounding environment
for its final landforms. Learnings in Tables 1 and 2 from studies beginning in 1997 were essential sources of
information relating to the identification, understanding, and quantification of the risks associated with the
MRS in question. They were used to concisely inform FMEA participants on the issues at hand and used to
guide the FMEA to effectively communicate the risk to achieve effective management outcomes.

To achieve the closure criteria a significant amount of reshaping and haulage of NAF material was required. The
significant NAF haulage requirements in conjunction with the current mining schedule indicated that if
completion of earthwork did not occur within five years, the cost of handling and closure would increase by 25
times due to increased haulage distances. One of the main objectives of the FMEA was to identify the main
failure modes that could hinder the closure of the landform resulting in substantially higher closure costs, and
to identify how to remedy identified potential failures within the five-year time frame. Therefore, the FMEA
successfully captured both the closure and capital expenditure requirements throughout the analysis.

Main points of consideration during the FMEA (amongst others) were:
e Reshaping of the MRS in question and integration with other MRSs.
e Evaluation of the base case landform design and cover system for closure within five years.
e Would the base case landform and cover system design achieve closure objectives.
e The management of water quality for surface water drainage and groundwater associated with the
MRS.
3.2 Time frame definition

To conduct the risk assessment, it was essential to agree upon a time frame over which likelihoods were
evaluated. During this FMEA short-term (planning, execution, and adaptive management / monitoring
phases) was 0-30 years (Figure 6). Long-term (proactive phase and a reactive phase) was 30-200 years
(Figure 6). The 30-year short-term time frame was primarily defined by the LOM in that execution of the
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closure design for the MRS would be conducted using existing operational scale equipment, and that
personnel would be onsite to conduct monitoring and maintenance for adaptive management. They were
agreed to during the FMEA workshop to ensure workshop participants were of the same understanding when
the commonly used subjective terms ‘short-term’ and ‘long-term’ were utilised during the workshop.
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I Management
|
| 1. Regulatory
l direction
I 2. Closure I
! experience !
| (accumulated ! )
| knowledge) I Proactive
: 3. Site-specific : Monitoring :
| process 1 |
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[ | scheduled I Reactive
| | monitoring to Monitoring
' | confirm 1
: trajectory : Monitoring in response to site
- | conditions/events
Monitoring I' Much less b he
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A.M. | - Earthquake
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Allocation of Resources to
Closure

Execution
Very well defined and understood risk
- Could achieve custodial transfer if
Planning tesired

| Time I

| Short-Term ' Long-Term '

I I I

| =0 to 30 Years | = 30 to 200 Years |

I 1 I

Figure 6 Time frame defined for the FMEA

Further to defining adaptive management, it was agreed during the FMEA workshop that ‘true’ adaptive
management must be adopted in order to properly address risks during this phase of closure, which will allow
for appropriate risk evaluation for the same failure mode in the long-term. For example, with ‘true’ adaptive
management, there is a commitment to:

o Utilise the observational method for monitoring during this phase.

e Develop conceptual models for performance.

e Design for the most likely conditions.

¢ |dentify all failure modes (and effects and pathways).

e Develop actual, available, allowable, and cost-effective contingencies for all identified risks.

e Develop designs that address these contingencies, which are put in place upfront and as part of the
overall design.

e Monitor closely and frequently to address issues such that contingencies can be implemented
before being non-compliant.

e Implement mitigation measures as needed and in a timely manner.
e Undertake regular audits against the performance and compliance program.

e Scan for opportunities to continually improve.
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3.3 Risk definition

An FMEA is a methodology for assessment of risk, which is a combination of likelihood and consequences of
failure. Risk encompasses both the likelihood of failure or expected frequency of failures, and the severity of
expected consequences if such failures were to occur. It is an imprecise process as it requires participants to
assess risks into the future; however, there is a difference between the risk of failure and uncertainty in the
estimate of that risk. Similar uncertainties are associated with the expected frequency and expected
consequence of a risk.

The risk matrix defined for the workshop combined the likelihood of occurrence with the severity of effects
for each failure mode and assigned it a risk level ranging from low (1) to critical (5) (Figure 7). The Mine’s
likelihood and consequence / severity categories were integrated for FMEA in order to better represent The
Mine’s risk profile, and to stay within The Mine’s framework for easy dissemination of information internally.
The ‘High’ and ‘Critical’ risk levels should be viewed as unacceptable and steps taken to reduce those risks.
The ‘Moderate’ and ‘Moderately High’ levels are acceptable if they were ‘As Low as Reasonably Practical’
(ALARP). A risk is ALARP if the cost involved in reducing the risk further is grossly disproportionate to the
benefit gained. The ‘Low’ risk designation is broadly acceptable.

Consequence Severity
Mimor (Mi - 2) | Moderate (Mo - Major (M - 4)

Low (L : 1) Critical (C - 5)

Moderate

Intolerable
Region

Almost Certain {AC)

Possibe (F)

Moderate

Likelihood
Uniikealy (L)

Maoderate

Maoderate

VVery Rare (/R)

Figure 7 Risk matrix defined for the failure modes and effects analysis workshop
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3.3.1 Likelihood definition

A quantitative likelihood approach (Table 3) was used during the FMEA workshop for risk evaluation, with
the actual chance of occurrence being dependent on the time frame being evaluated (i.e. short-term or long-
term). The risk likelihood scale was adapted to suite The Mine’s risk profile for assessing event risks resulting
in easy integration into The Mine’s framework. In other words, likelihood classes and percentage cut-offs
from 0—60 % remained unchanged, however, the four cut-offs on The Mine’s scale for >60 % were integrated
into one category.

Table 3  Likelihood of occurrence for environmental and public concern consequences over the failure
modes and effects analysis assessment period of 200 years

Likelihood class Likelihood of occurrence for environmental
and public concern consequences

Very rare (VR) <2% chance of occurrence
Rare (R) 2-20% chance of occurrence
Unlikely (U) 20-40% chance of occurrence
Possible (P) 40-60% chance of occurrence
Almost certain (AC) >60% chance of occurrence

3.3.2  Consequences/severity of effect definitions

The consequence/severity of specific failure modes was assessed based on an evaluation of expected
responses following failure. Adverse effects may have physical, biological, health and/or safety
consequences. The estimate of consequences is based on the professional judgement of participants and the
anticipated impact of that failure, with the chosen ranking based on the consensus of the workshop
participants. The Mine’s consequence and severity categories were integrated into the FMEA in order to
better represent its risk profile, and to stay within The Mine’s framework for easier communication within
the company.

333 Confidence level definition

Workshop participants developed a consensus on the level of confidence for the risk ranking determined for
each failure mode and effects pathways. This level of confidence varied based on the knowns and unknowns
at the site, and the failure mechanism. The level of confidence of participants for each evaluation was
identified and documented using the designations described in Table 4.

Table 4  Confidence level categories designated by workshop participants

Confidence Description

Low (L) Do not have confidence in the estimate or ability to control during
implementation.

Medium (M) Have some confidence in the estimate or ability to control during
implementation, conceptual level analyses.

High (H) Have lots of confidence in the estimate or ability to control during
implementation, detailed analyses following a high standard of care.
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4 FMEA outcomes to manage the risk

The FMEA workshop quantified risk and prioritised management actions required to mitigate those risks for
closure of the MRS in question within five years. Outcomes from the FMEA workshop were intentionally
collaborative as it provided a platform for discussion and debate, leading to outcomes upon which all
participants agreed. Outcomes included the development and refinement of the Base Case landform and
cover design, and mitigation measures addressing identified failure modes in order to increase the likelihood
of attaining closure objectives. The FMEA highlighted numerous overarching concepts and potential failure
modes regarding the closure design of the MRS. The formalisation of key concepts were used guide
short-term management actions aimed to address failure modes requiring immediate attention.

4.1 FMEA outcomes — overarching findings

During the workshop participants agreed that results from the material characterisation program, specifically
sulphur speciation work on the MRS provided strong evidence for the presence of large stored oxidation
products in a solubility-controlled system. That is, the mobilisation of stored acidity is dependent on the level
of saturation (porewater flow rates) within the MRS. Moreover, porewater flow rates are influenced by NP
rates where lower NP will generally decrease acidity mobilisation for a longer period, while higher NP will
generally increase acidity mobilisation for a shorter period. Overall, seepage is expected to occur regardless
of the cover system alternative and/or geometry utilised at the MRS; however, the chosen alternative will
have an influence on the timing and rate of mobilised acidity.

Participants agreed that a cover system that decreases NP, hence decreased acid mobility and seepage from
the MRS should be constructed. The cover system should contain materials with texture capable of providing
sufficient moisture content to sustain vegetation species resembling surrounding areas. They also agreed
that cover system material texture, depth, and vegetation establishment are key to reducing NP, and
therefore mobilisation of acidity and seepage.

A consensus from the workshop was the fundamental need to further understand the wetting-up evolution
of the MRS to implement practical, effective, and timely closure planning management measures. The timing
and rate of seepage is largely dependent on the wetting-up/drain-down evolution of the MRS. Moreover, in
large MRSs such as the one evaluated, the time required to fully wet up across the full depth of the MRS can
take decades. Noting however, that toe and basal seepage can still occur prior to a fully wetted-up condition
as sections with less waste depth will wet up sooner (e.g. under sloping surfaces) than those with greater
waste depths (e.g. middle of the MRS).

4.2 Managing the risks

Formalisation and broad acceptance of the overarching findings led to the discussion and formulation of
short-term technical action items with potential to mitigate identified risks. In some instances, technical
failure modes fell into more than one technical action item category. A summary of four key failure modes
and associated three technical action items intended to mitigate risks associated with the base case landform
and cover system are presented in Table 5. Okane is currently completing or have completed several of the
technical action items.
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Table 5 Four key failure modes identified during the failure modes and effects analysis, and three
associated action items Okane are/have completed and their intention
Failure mode Technical action item Action item intention Status
* The average ¢ Shallow drilling of MRS surface. e Intended to refine stored Completed
sulphur grade for acidity estimates required for
existing acidity used closure planning and evaluate
to predict acidity is the gas risk associated with
higher than landform reshaping.
modelled.
¢ An increase in
stored oxidation
products, NP, and
temperature occur
during landform
reshaping.
¢ The average e Further drilling, material ¢ Intended to refine the MRS Ongoing
sulphur grade for characterisation, and downhole  wetting status to improve
existing acidity and instrumentation of the MRS to understanding for timing and
used to predict further understand the stored volume of seepage release.
future additional acidity risk and monitor in situ
acidity is higher water and temperature
than modelled. conditions to understand the
e An increase in volume, concentration, and
stored oxidation timing of potential seepage.
products, NP, and
temperature, occur
during landform
reshaping.
* Poor vegetation eAn improved understanding of e Improving/optimising Ongoing

establishment
and/or mortality on
the cover system
due to a lack of
moisture availability
in the short-term.

¢ Predicted positive
influence of
vegetation on
reducing NP is not
achieved.

plant moisture requirements as a
function of cover material
physical characteristics through
vegetated cover trials and
quantification of plant
characteristics on previously
rehabilitated areas.

* The selection of cover material
that has adequate water holding
capacity to support plant
moisture requirement, and/or
the selection of species that are
best suited to the cover material
physical characteristics should
improve the establishment
success of vegetation during the
short- and long-term.

vegetation establishment
success and survival by
addressing knowledge gaps
associated with plant moisture
requirements and material
characteristics to achieve the
revegetation closure objective.
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5 Closure

Okane have worked with The Mine for 20 years to assist in building an understanding of the legacy issues
originating from before the 1990’s that were associated with a lack of AMD prediction, historic dumping
practices, and lack of engineering controls for oxygen and water. Evidence of PAF material reactivity was
recognised early resulting in the identification of potential risks most notably high internal temperatures
resulting in gas release and AMD thus guiding preliminary technical studies. Preliminary studies included the
construction of instrumented cover systems as a means of limiting oxygen ingress and NP. An MRS drilling
program was also completed to quantify the structure, reactivity and hydrology of the MRS. During drilling
the MRS internal structure was characterised and instrumented with gas and moisture sensors to quantify
MRS reactivity and moisture conditions in response to environmental factors over time. These investigations
led to significant advancements in the understanding of the MRS conditions, construction, sulphide
oxidation, and associated risks.

Using the FMEA process Okane were able to effectively quantify and communicate the risk associated with
the closure of a large MRS at an iconic mine in the Pilbara region of WA. Overarching concepts driving the
risk and alterations to the base case landform design and cover system were agreed by all expert participants
during the workshop. Effective communication of risks, and identification of failure modes and effects
resulted in the identification of technical action items that could be completed to mitigate risks. Action items
fit within the short-term time frame (<30 years), and within the five-year closure time frame of the MRS
resulting in a cost savings of 25 times the cost compared to if earthworks were to occur outside five years.
Closure solutions are specific to the company’s closure criteria and risk profile ultimately resulting in
mitigation of risks and long-term cost minimisation for closure.
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