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Mining geomechanics presents specific challenges to application of the closely-related 
methods of Artificial Intelligence (AI), big data, predictive analytics, and machine learning. 
This is because successful use of these techniques in geotechnical engineering requires 
four-dimensional (x, y, z, t) data integration as a pre-requisite, and 4D data integration is a 
fundamentally difficult problem.  
 
This paper  describes a process and software framework that solves the pre-requisite 4D 
data integration problem, setting the stage for routine application of AI or machine 
learning methods. The workflow and software system brings together structured and 
unstructured data and interpretation from drillhole data to all types of geological, 
geophysical, rock property, geotechnical, mine production, fixed-plant, mobile equipment, 
and mine geometry data, to provide a data fusion capability specifically aimed at applying 
machine learning to rock engineering problems.  
 
The system does this by maintaining 3D earth model and 4D mine model geometrical data 
structures, upon which multiple data sets are projected, interpolated, upscaled, 
downscaled, or otherwise processed appropriately for each data type so that the variables 
of importance for each problem can be co-located in space and time, a requirement for the 
application of any analytics algorithm. Documents and files can be stored, managed, and 
linked to data and interpretation to provide relevant metadata and contextual links, 
providing the platform required for AI solutions. The system rationale and structure are 
described with reference to specific AI challenges in rock engineering. 
 

INTRODUCTION 
 
Most people are aware of the AI technology revolution. From self-driving cars to medical, financial, and 
marketing applications, we have been exposed to its predictive power. Why have these methods not yet 
had a significant impact on understanding or forecasting mining geomechanics outcomes? The rewards 
of AI should be immense as mines get deeper and forecasting of stress-related or other rock behaviour 
becomes a limiting factor on safety and production. The reason for lack of success is simple—there is a 
fundamental barrier that makes mining geomechanics different from traditional AI applications. 
 
AI and its close relatives, predictive analytics, machine learning, and big data (all of which in practice 
are either broadly synonymous terms or subsets of each other), work well when you can measure many 
variables on a specific entity, such as a mining machine, a length of drill core, or even an industrial 
process, and simultaneously record a condition that you want to be able to forecast such as machine 
failure, or the mineral and geometallurgical properties of rock, or the output of a process. AI can uncover 
complex, predictive relationships among measured variables and the condition to be predicted. That is 
why it is already being used with success in some corners of the mining industry, such as understanding 
the relationship between fleet vehicle data and maintenance requirements or predicting 
geometallurgical parameters from core scans. 
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However, in mining geomechanics, its application is far from simple. The reason for this is that the 
condition being predicted, such as  the location and timing of a geotechnical hazard (including  rock 
fall, rock burst, or slope failure, seismic event probability forecasting, ore dilution forecasting, or 

drawpoint hang-up prediction), may be related to known factors (e.g., geology, rock mass properties, 
fault structures, mine geometry, stress, extraction, production, stope sequencing, deformation, 
seismicity, blasting, and support). But those factors are in many cases not easily estimated quantifiable 
variables at the location where the prediction is required. The condition to be forecast (e.g., the rock 
burst or the slope failure) exists when and where it does because of the properties of the complex, four-

dimensional, spatial and temporal natural earth and engineered mine system. Not only are many of the 
factors affecting the prediction separated in space and time from the location and timing of the forecast 
event, but many of the factors can only ever partially be known, because they are inferred from models 
(geological models, geotechnical models, numerical stress models, etc.) that are themselves created from 

sparse measurement or drillhole data. 
 
Nevertheless, in spite of these particular challenges of applying modern AI or machine learning 
methods to mining geomechanics, success can and has been achieved. The solution is to take the focus 
off the mechanics of AI itself and put the focus on how these problems are set up for the application of 

AI methods, which is where deep domain knowledge and a mining-specific, supporting computational 
framework are required.  
 
 
HOW ARTIFICIAL INTELLIGENCE WORKS 
 
There is much confusion in popular usage of the terms used to described what amount to a collection 
of pattern recognition algorithms. In formal usage, AI is a broad term encompassing the general field of 

computer simulation of human intelligence. Machine learning is a narrower term, conventionally a sub-

set of AI that uses computer algorithms to create a predictive mathematical model based on so-called 
historical training data that can be used to forecast the relative probability of future occurrences of given 

events.  

 
Classes of machine-learning algorithms include decision trees, random forests, support vector 

machines, Bayesian inference, ensemble methods, and others. Deep learning is a subset of machine-
learning algorithms that uses neural networks. The term predictive analytics is roughly synonymous 

with machine learning, but more often used in a business application context. The term big data is 

conventionally reserved for very large data sets, typically comprising both structured data (such as 
tables of numbers) and unstructured data (documents, photos). In popular use however, and for the 

purposes of this paper, I consider AI, machine learning, predictive analytics, and big data to all be 

effectively synonymous, and will use the term AI. For rock engineering applications, the choice of AI 
algorithm matters much less than correctly setting up the inputs to whatever algorithm is chosen. 

 
“Artificial Intelligence is colossally hyped these days, but the dirty little secret is that is still 
has a long, long way to go… AI systems tend to be passive vessels dredging through data in 
search of correlations; humans are active engines for discerning how things work… Unlike 
human cognition, AI systems lack a theory of the world and how it works.” Marcus (2017). 

 
The truth of the above quotation underlines what we can and what we cannot hope to achieve in 

applying these methods to mining geomechanics. 

 
What we may achieve by applying AI in mining geomechanics: 

1. find correlations among multiple data sets and conditions or events we would like to forecast. 

2. create useful statistical models that quantitatively combine multiple input data sets into 
meaningful output forecasts of future geomechanical behaviour. 

3. establish the relative importance of individual data types in understanding future behaviour. 

4. confirm or refute assumptions concerning relationships between data, models, and experience 
and generally put our assumptions of site behaviour to the test of measured facts. 



 

 

 
What we will not achieve (anytime soon) by applying AI in rock engineering: 

 

establish new conceptual or physical models that describe rock engineering behaviour. 
 

AI systems easily available to us today are indeed “passive vessels dredging through data in search of 
correlations. Yet that is of great value in itself in mining geomechanics. It provides us with a new, 

sophisticated capability to understand underlying patterns in very complex data and apply those 

patterns as a set of rules that can be used to predict future behaviour based on the patterns of past 
experience. AI works in any domain by measuring features of a great many examples of something and 

correlating those features with a condition to be predicted. For example, one could measure features 

(symptoms) of many individual patients in a medical application and label those patients according to 
the presence or absence of a specific medical condition. AI techniques could be deployed to comb 

through thousands of patient records, sort out the relative importance of multiple measured features 

(symptoms in the example), and create a mathematical model enabling the estimation of the probability 
of any new patient having the specific condition. AI does this by measuring the important features and 

combining them according to the learned relationship between the features and the probability of 

having the condition. The process of uncovering the relationship between measured features and the 
condition of interest is called training. 

 
By analogy, the example above can be applied to many problems in rock engineering and, by further 

analogy to the medical diagnostic case, it can be of tremendous practical value to understand the likely 

existence of a specific condition of importance (e.g., high probability of failure) that can be addressed 
with practical remediation measures. That remains true whether or not the underlying root causes of 

the conditions to remediated are fully understood. Nevertheless, in mining geomechanical applications 

of AI, unlike AI applications in many other domains, we prefer to use AI algorithms that are not black 
boxes, but rather reveal as much as possible about relationships among data, models, and outcomes. 

 
Challenge in applying artificial intelligence to mining geomechanics 
The central challenge in applying AI to mining geomechanics problems stems from a simple fact: the 
condition (including rock fall and slope failure) whose location and timing that we want to forecast 

results from a complex interplay of factors in a four-dimensional, dynamic system that can only partially 

be known. Capturing the important factors from this complex system for AI training, and subsequent 
application to new data for providing probabilistic forecasts of where and when conditions of interest 

may occur, is the key challenge. Meeting this challenge requires deep domain knowledge. It is here 

where mining geomechanics knowledge enters the AI workflow, and it is where the application of that 
knowledge to capturing the most meaningful system factors will mark the difference between success 

and failure. 

 
To give some examples, consider rock bursts in underground mines or slope failures in open pit mines. 

Rock bursts may be possibly correlated to a host of factors such as depth, stress, stiffness, ground 

deformation, extraction ratio, production rate and sequencing, support, blasting, span and other mine 
geometry factors, rock type, rock quality, proximity to geological contacts, proximity to structures, 

proximity to structural intersections, and orientation of structures with respect to stress and mine 
geometry. Similarly, slope failures may be possibly correlated to a host of factors such as slope angle, 

face angle, inter-ramp angle, face height, berm width, rock quality generally, joint characterisation both 

generally and with respect to wall orientation, water, rock type, proximity to geological contacts, 
proximity to structures, proximity to structural intersections, orientation of structures with respect to 

pit geometry, and ground deformation. The factors in play are generally site-dependent; capturing the 

appropriate ones requires both general and site knowledge. 
 
Co-location in space and time is the most important concept in properly capturing the rock engineering 

factors that may correlate to the conditions we want to forecast. The AI training algorithms require many 
examples of multiple measurements on the same thing. In the medical diagnostic analogy, that same 
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thing is the patient, and the algorithms require many patients on whom multiple factors are measured 

in addition to noting whether individual patients are afflicted with the condition of interest. In mining 
geomechanics, it is individual locations in space and time on the rock face that stands in for the patient 

of the medical analogy. At those individual locations on the rock face (along a drift, in a stope, on a pit 

wall), many factors can be measured, some of which (e.g., stress, deformation, seismicity) change over 
time. The data to be assembled for the AI training is of the form: 

 
(x, y, z, t, observation 1, observation 2, … observation m, condition = true or false). 

 

In AI, this collection of measurements is called a feature vector. It contains the coordinates of the place 
(x, y , z, t) that specifies a unique location in space and time on the mine, a series of m observations (e.g. 

RMR, stress) that are observed or estimated at that location, and a condition or target variable that is 

most commonly a simple binary true or false indicating that the condition being investigated was 
present or absent at that place and time (for example a rock burst or slope failure). In practice, there are 

typically many thousands of individual feature vectors and a few tens of observations per feature vector. 

In fact, the number of feature vectors available to us in the rock engineering domain is virtually 
unlimited because we are sampling over the mine geometry and time, both of which we may discretise 
as finely or coarsely as we choose. The number m of observation variables per feature vector is also very 

much at our discretion, as it is not unusual in AI to include many secondary variables (such as 
mathematical derivatives to test for significance of both spatial and temporal rates of change) of the 

primary observed or inferred variables. This expansion of observations in the feature vector by 
mathematical manipulation such as taking derivatives can be carried out systematically. It is in 

establishment of the primary observations that the crux of the challenge lies. 

 
Co-location demands that we establish potentially useful quantities relating to each of the primary 

factors (e.g. rock quality, stress) that we may think have a relationship to the condition being analysed 

(rock fall, slope failure) at thousands of points (x, y, z, t) in the mine. In practice, this means creating a 
4D model of the mine—a 3D model at several or many time steps—that contains all the primary 

observations believed to possibly have a relationship with the condition of interest. Creating that 4D 

mine model upon which AI algorithms can be trained to understand the patterns and relationships 
among data, interpretations, and the history of occurrence of specific events is the central challenge in 

applying AI methods to mining geomechanics. It is also in constructing the 4D model that rock 

engineering problems may indeed become big data. The number of data contained in the 4D model that 
is input to the AI algorithm is (m x n), where m is the number of observations per feature vector, n is the 

number of feature vectors (which is the number of digitised points on the mine model multiplied by the 
number of time steps, a quantity that can easily be in the millions). 

 

I have described the practice and pitfalls associated with the application of AI algorithms to rock 
engineering problems elsewhere, McGaughey (2019). In the remainder of this paper I focus on the most 

pressing challenge in the overall workflow, which is construction of the 4D mine model from which the 

set of feature vectors used as input in AI are derived. 
 
 
A framework for successful application of ai in rock engineering 
A system, Geoscience INTEGRATOR , McGaughey et al ( 2017), has been created that provides simple 

computation of the variables required to address the application of AI to mining geomechanics 
problems, and provides a real, working data-structure definition to the notion of a 4D mine model. It 
accomplishes this by maintaining 3D earth model and 4D mine model geometrical data structures, upon 

which multiple data sets are projected, interpolated, upscaled, downscaled, or otherwise processed 
appropriately for each data type so that the variables of importance for each problem can be co-located 
in space and time. Documents and files can be stored, managed, and linked to data and models to 
provide relevant interpretational metadata and contextual links, providing the platform required for AI 
solutions. 

 
 



 

The general system configuration is shown in Figure 1. A 4D data management system sits at the core 
of the system. The data management system manages all relevant data types, including geological 
models, mine infrastructure models, drillhole and sample data, production and blasting data, and 

instrument monitoring data of all types (e.g. convergence and extensometer station time series data, 
prism and radar data, seismic data). It is able to automatically ingest new data from instruments or 
external databases. Hazard occurrence or other relevant event conditions are input automatically or 
manually. Most importantly, the data management system maintains an explicit model of the mine, 
digitised in time and space, and provides the required mappings between input data streams, the 4D 

mine model, and output forecasts of rock engineering conditions or events. 
 

 
 

Figure 1. The Geoscience INTEGRATOR system configuration. A 4D data management system resides on a 

server, connected to a Model Server for automated computation of variables (feature vector observations 

described in the text) and an Analytics Server for applying AI rules and computing event probabilities 
 
 
The data management system is directly connected to a Model Server, in this implementation a run-
time version of the SKUA-GOCAD® modelling engine, and an Analytics Server which can apply AI 
rules to new data to deliver updated reports (typically hazard assessment reports). The Model Server is 
set up to compute required variables automatically, on user demand or on a set schedule (e.g., daily). It 

operates under the control of the data management system, which queues required computations, 
supplies the input data, triggers the Model Server to run one of many pre-defined scripts, and receives 
output as newly computed observations on its internal representation of the mine model at all relevant 
locations (x, y, z, t). 

 

Examples of computations that can currently be automatically run by the Model Server to update 
properties on the mine model (feature vector observations) include: 

 interpolate rock quality variables in a block model based on a variety of simple interpolation 
and geostatistical estimation techniques. 
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 interpolate time-windowed seismic source properties. 

 compute time-windowed seismic event density. 

 compute maximum seismic PPV over given time windows. 

 compute proximity to contacts and structures. 

 compute proximity to intersections of any groups of faults, dykes, geological contacts. 

 interpolate ground deformation. 

 compute deviatoric stress. 

 compute fault-slip tendency. 

 compute extraction ratio based on mine infrastructure wireframes. 

 compute wedge and planar joint failure parameters using kinematic bench analysis. 
 
An example of the web browser user interface illustrating a sample list of computations set up on an 
automatic schedule for an actual case study is illustrated in Figure 2. 
 

 
 

Figure 2. Geoscience INTEGRATOR web interface screen shot illustrating the automated scheduling of several 

computations used in the application of AI-based geohazard assessment 

 

The computations illustrated in Figure 2 serve to populate the 4D mine model data structure with 
calculated values for each observation type. The calculations are customised per site to account for the 

many specific parameters that typically must be set per computation (e.g. length of time windows), as 
well as the frequency of update per data type. 
 
Figure 3 also shows a screen shot from the system’s web browser interface. It is showing a view of its 
internal data fusion table, which is a tabular display of the values of system-computed observations on 
individual mine model points (x, y, z) for a given user-selected time t. The rows of this table correspond 

to individual feature vectors. The complete table is the input to the AI algorithms. The output of the AI 
algorithms is a probabilistic estimation of the given condition being analysed (e.g., rock fall or slope 
failure). The output estimation is in an additional, time-varying quantity on each mine model point (x, 
y, z, t), describing how the probability of manifesting the condition is varying across space and time. 

Figure 4 is a screen shot from the web browser interface showing a subset of rules, output from the AI 
algorithm, which are applied to the mine model points to determine, in the particular case study 
example shown, relative probability of rock burst occurrence across a mine. For the example shown in 



 

Figure 4, the rock burst probability forecast is automatically updated weekly, but the schedule can be 
arbitrarily set to whatever is appropriate to the mine site. It is important to note that, without such an 
automated system, updating these computations is extremely laborious. Our experience over the years 

as consultants initially carrying out these computations manually, was that the computations were 
sufficiently burdensome that mines would carry out updates typically annually and at most quarterly, 
essential rendering it a tool for mid-to-long-term planning rather than a tactical operational guide to 
current areas in the mine that warrant concern. 
 

  
 

Figure 3. Geoscience INTEGRATOR web interface screen shot illustrating the table of feature vectors (also 

known as the data fusion table) for a case study. Each row of the table corresponds to one feature vector, with 

only four observations (columns in the table) selected for display. The table is shown for a selected time and area 

of the mine. The AI algorithms act on the complete table 

 
Figure 5 shows a final, reportable operational output from the system. Once the AI rules (illustrated in 
Figure 4) are applied, the relative rock burst probability can be displayed as a property on the individual 

mine model points. The case study example shown is for one mine level only, with relative probabilities 
above a set threshold shown as large symbols as well as warmer colours to visually stand out. The mine 
level display can be captured in a PDF report and automatically dispatched on a schedule to a defined 
email group, or a trigger-alert can be set up if a given threshold is exceeded. All of the underlying 
variables, as well as the final output hazard assessment result, at each mine model point can be 

visualised for inspection and validation. All model components, variables, and hazard assessment 
results can also be easily visualised in 3D using the data management system’s 3D visualiser client 
application (See Figure 6). 
 

In practice, this system can be easily set up at mine site on conventional hardware or as a cloud-hosted 
deployment (both have been done ). Data sizes are manageable with large but not extraordinary 
demands required on storage capacity. Whether deployed on site or cloud-hosted, Geoscience 
INTEGRATOR can be connected to multiple data sources at the mine site in several ways. Users can 
manually update slowly changing data such as mine infrastructure geometry or block models through 

a manual drag and drop into specified folders on the file network system for automated import. These 
monitoring folders can also be used for machine-to-machine communication, typically as csv files 
automatically output from monitoring systems (such as microseismic or ground deformation). The 
system can also be customised to pull directly from third-party databases (such as production 
databases). Because all data relevant to the hazard assessment is contained within this single data 

warehouse, it provides a single point from which to query and access any relevant data. In fact, some 
mine sites use the system for this data warehouse purpose alone. Figure 7 provides a schematic 
representation of the data flow. 
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Figure 5. The mine model shown (by level) as the series of digitised points with computed observation values as 

well as the probabilistic AI-formulated hazard assessment. The display shows rock burst hazard index, as of a 

certain date and time, with values exceeding a given threshold shown with larger symbols to visually stand out 

Figure 4.  Screenshot from the Geoscience INTEGRATOR web browser interface showing a subset of rules 

output from an AI algorithm at a case study mine site where the objective was dynamically updating a model of 

rockburst hazard (in this case weekly), based on an automated update of several input data streams. 

 



 

 

 
 

Figure 6. A 3D visualiser client called Geoscience ANALYST connects directly to the Geoscience 

INTEGRATOR server, enabling 4D query of the data management system to display hazard assessment results 

(as shown here with warmer colours indicating greater rock burst hazard probability) or any of the underlying 

data, model components, linked files, documents, and images 

 

 
 

Figure 7.  Schematic representation of data flow from independent data sources (top) to the data management 

system (centre), with connection to the server-based 3D spatial modelling engine for updating the 4D model in 

response to new data (right), input-output to the analytics (AI or machine learning) system (bottom), and finally 

hazard assessment reporting (left) 
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CONCLUSION 
 
AI can be successfully applied to complex mining geomechanics problems. Doing so requires focusing 
on the primary challenge of setting up the problem rather than focusing on the AI algorithms 
themselves, most of which will provide value if the problem is properly set up. Developing the proper 
inputs for AI in rock engineering requires mapping the complex, 4D mine and earth model system to a 
proper data structure in which the many multi-disciplinary factors in play can be co-located in space 
and time. Doing so in a practical, operational sense requires implementation of a 4D data management 
system coupled with a powerful spatial modelling engine (the Model Server) and the AI algorithms (the 
Analytics Server). Inputs and outputs must be automated to support systematic update at a frequency 
that is operationally useful for tactical decision making by operators. 
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