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Abstract 

Design of open pit slopes is a decision-making process which aims to maximise the ore recovery while 

minimising the excavation volumes. The current practice of designing open pit slopes adopts the widely 

accepted Guidelines for Open Pit Slope Design by Read & Stacey (2009). An optimum design should satisfy a 

design acceptance criteria (DAC). However, designing open pit slopes is a complex process that involves 

inherent risks and uncertainties. As a result, reliability analyses are becoming increasingly important for 

performance-based slope designs. In a reliability approach, the amount of information on the slope materials 

and behaviour would reflect the reliability of a slope design. This paper presents a parametric study defined 

by the uncertainties of the rock mass strength properties and the slope geometric configurations at three 

different design reliability levels targeting a reliability-based DAC (RBDAC). The reliability assessment is 

performed using probabilistic analysis adopting the two-dimensional limit equilibrium method and Monte 

Carlo simulations. The input variables for the rock mass strength are defined through probability density 

functions (PDF) that capture the natural variability, while the input variables of geological structures are 

defined through kinematic assessments. 

The PDFs of the rock mass strength properties were modelled based on the generalised Hoek–Brown criterion 

using the mean, coefficient of variation (COV) and dependence between quantitative properties of the 

criterion. Results show that most of the resultant pairs of Factor of Safety (FoS) and probability of failure and 

associated COV of the resulting FoS (COVFoS) are consistent with the RBDAC. Based on this, a redesign is 

proposed showing the applicability of the RBDAC and comparing it to the current DAC. This approach has 

significant implications for slope optimisation or mitigation plans for future pushbacks in case of instabilities.  

Keywords: reliability-based design acceptance criteria, coefficient of variation, probability density functions 

1 Introduction 

Design of open pit slopes is a decision-making process which aims to maximise the ore recovery while 

minimising the excavation volumes. This decision-making process is subjected to uncertainties related to the 

geotechnical conditions, ore resources, commodity prices and cost (Darling 2011), which needs to be 

considered along with acceptable criteria. The widely adopted slope design process and design acceptance 

criteria (DAC) were published by the Large Open Pit (LOP) project in 2009. The slope design process is an 

iterative process of analyses performed throughout short- and long-term designs which should target and 

then meet the DAC. Various approaches have been considered for the slope design, ranging from empirical 

assessment to advanced numerical assessments.  

A typical approach such as deterministic analysis is widely adopted in the industry, and relies on precisely 

defined values (e.g. average uniaxial compressive strength values) in the calculation of Factor of Safety (FoS). 

However, it has been recognised that this approach can lead to risky or conservative slope designs. For 

example, a case study of an open pit diamond mine reported that back-analysis of past failures does not fail 

at mean values (Martin & Stacey 2018). Based on that experience, subsequent slope stability analyses at this 

mine were carried out using the 35th percentile values for rock strength (Martin & Stacey 2018). This case 

study highlights the impact of uncertainty on the slope design process and the decision-making process by 
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using more conservative values. Consequently, the probabilistic approach is deemed more appropriate as it 

yields a more robust design, avoiding over-conservatism and risky slope designs.  

On the other hand, the 2009 DAC is an FoS–Probability of Failure (PoF) matrix based on different levels of 

consequences (low, moderate, high) and the scale of the slope (bench, inter-ramp, overall). However, the 

same FoS does not mean the same for a given degree of uncertainty or level of reliability. In this regard, 

Macciotta et al. (2020, 2021, 2022) identified that mature operating pits had been transitioning to 

performance-based designs, allowing operators to adopt lower DAC while ensuring adequate safety levels. 

Furthermore, it was identified that the target FoS–PoF pairs proposed in the 2009 DAC were inconsistent in 

terms of the statistical relationship between FoS–PoF. To this end, Macciotta et al. (2020, 2021, 2022) 

presented a reliability-based DAC (RBDAC) matrix that considers adequate pairs of FoS–PoF that are 

consistently associated through the coefficient of variation (COV) for different reliability levels and different 

economic consequences of unsuccessful slope performance. It is noteworthy that the RBDAC considers 

management of economic risks and not safety risks, because it is assumed that safety risks are kept within 

tolerable levels and managed through in-house trigger action and response plans.  

As an example, Gaida et al. (2021) carried out a thorough evaluation of the components of the slope design 

process, identifying a high reliability on the geotechnical model. This allowed the design of an alternative 

targeting a lower FoS, highlighting the benefit-cost reward. Moreover, Creighton et al. (2022) highlighted the 

significant impact of enhancing reliability in the slope design process on business outcome, by the adoption 

of a RBDAC and risk-reward approach. This paper presents a parametric study based on the geomechanical 

characteristics of the rock mass and slope configuration of an open pit mine. The study is performed through 

probabilistic analysis using the two-dimensional (2D) limit equilibrium method (LEM) along with the Monte 

Carlo technique. The result of the probabilistic analysis aims to evaluate the uncertainty of the rock mass 

parameters and the geological structures. The former is assessed through the COV defined by statistical 

measures. The latter is assessed through stereographic projections, which are further integrated into the 

stability analysis using a generalised anisotropic strength approach. The integration of geological structures 

aims to gain insight of the role of epistemic uncertainty in slope stability (in this study, associated with the 

geometrical configuration of discontinuities and not to the mechanical properties). Calculated values of  

FoS–PoF pairs and COV are plotted against the 2020 RBDAC. Moreover, to test the applicability of the 

double-entry matrix, a design of a pushback is developed to provide insights into potential trade-offs 

between safety, excavation volume and economic benefits. 

2 Uncertainty in rock strength 

Uncertainty is an important factor in geotechnical engineering because of the inherent randomness and 

complex heterogeneity of geological settings. Essentially, uncertainty can be categorised as natural (inherent) 

variability or aleatory uncertainty, and epistemic uncertainty (Baecher & Christian 2003; Hudson & Feng 

2015; Kiureghian & Ditlevsen 2008; Ferson & Ginzburg 1996). The former is associated with natural processes, 

both spatial and temporal (e.g. spatial variability of geological units, occurrence of earthquakes). The latter 

is associated with a lack of knowledge and understanding, which can be reduced by increasing the 

data-collection effort. Handling uncertainty is difficult as it cannot be completely eliminated, but an 

understanding of it is essential in performance-based design and risk-informed decision-making. 

Numerous research studies have been undertaken to analyse the natural variability of rock strength. Some 

studies aimed to assess the natural variability by measuring the COV, which has been linked to various rock 

types. Hadjigeorgiou and Harrison (2012) found that the COV tends to increase as the degree of anisotropy and 

heterogeneity in the rock increases. In addition, Bewick et al. (2015) concluded that the natural variability of 

uniaxial compressive strength (UCS) is higher in heterogeneous rocks compared to homogeneous rocks due to 

the different failure modes exhibited during laboratory tests. Thus the COVUCS tended to be higher in 

heterogenous rock datasets than in homogeneous rock datasets. Similarly, Rafiei Renani et al. (2019) 

investigated the variability of rock strength in high heterogeneous porphyry deposits and reported COVUCS 

values close to 1, indicating significant variability. On the other hand, the natural variability of the  

Hoek–Brown parameter, mi, has not been measured as extensively as the UCS. Phoon & Retief (2016) reported 
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COVmi values for different types of rocks. Figure 1 depicts a summary of some studies on rock strength 

variability, illustrating the uncertainty associated with intact rock properties, particularly UCS and mi. 

  

(a) (b) 

Figure 1 Coefficient of variation of intact rock parameters from a subset of previous studies. 

(a) Coefficient of variation of Uniaxial Compressive strength; (b) Coefficient of variation of  

Hoek–Brown parameter (Bewick et al. 2015; Rafiei Renani et al. 2019; Phoon & Retief 2016) 

Stochastic models, including probabilistic approaches and Bayesian statistics, have been used to describe and 

measure quantitatively the random variability in rock strength parameters (Bedi & Harrison 2013). 

In probabilistic analyses, a probability density function (PDF) is assigned to the random variable, typically 

characterised by statistical measures such as mean, standard deviation and COV. Common probability 

distributions used in rock slope engineering include the lognormal and normal distributions. Generally, 

lognormal distribution can provide an adequate fit, whereas normal distribution can be chosen in the absence 

of information (Phoon & Retief 2016; Hoek 1998). However, parameters evaluated semi-quantitatively, such 

as the rock mass rating (RMR) or geological strength index (GSI), may require different PDF representations. 

The choice of distribution depends on the available information. For instance, Hoek (1998) used a normal 

distribution to represent the ranges of GSI when analysing the stability of a rock slope with limited 

information. In this paper, a probabilistic approach was adopted to evaluate uncertainty in rock mass 

properties (Bedi & Harrison 2013). The disturbance factor (D) referred to the consideration of how mining 

activities such as blasting, excavation, stress relief and other processes that affect the stability of rock slopes 

depend on the definition of the damage region. The definition and the extension of the damage zone differs 

from the assumptions considered from the practitioners and it is difficult to calibrate with real data (Ma et al. 

2022). In this regard, the associated uncertainty of the D factor was not assessed in this study.  

 A specific geological context and the slope geometry of an open pit mining operation is used to develop a 

comprehensive understanding of parameter uncertainty. In addition, this parametric study is based on 

available site-specific information and information reported in previous studies.  

3 Materials and methodology 

This paper is based on a specific geological setting, with the material parameters and slope configurations 

varying based on their respective levels of engineering effort. These components were adopted from an open 
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pit mining operation in South America. The open pit mine is a porphyry copper deposit hosted in Late 

Cretaceous-Paleocene andesite. The andesite is cut by the intrusion of porphyry rocks ranging from quartz 

monzonite to granodiorite. Figure 2 shows the geological map on the exposed pit (Padilla et al. 2001). 

Two lithological units are the main rock units exposed in the sector analysed.  

 

Figure 2 Geological map of the base case used to inform this study (after Padilla et al. 2001) 

The geological structures and their interaction with rock mass fabric, leading to medium- to large-scale 

instabilities (Hustrulid et al. 2001), are integrated into the probabilistic analysis.  

Probabilistic slope stability analyses are performed using a 2D LEM adopting the GLE/Morgenstern-Price 

method. The software used to this end is SLIDE2. Also, the Monte Carlo technique is used to define the input 

parameters and the associated uncertainty. The workflow adopted is outlined in Figure 3. The workflow 

begins with the modelling of rock mass strength parameters and their variability in terms of COV, adopting 

the generalised Hoek–Brown failure criterion. Subsequently, the generalised Hoek–Brown failure parameters 

were transformed to equivalent Mohr–Coulomb parameters considering the Pearson correlation coefficient. 

Resultant equivalent Mohr–Coulomb parameters, along with their variability, were then introduced as input 

parameters to perform stochastic limit equilibrium analysis for evaluation against the 2020 RBDAC. Two types 

of analyses were carried out (depending on the scenario): one considering rock mass strength failure and 

one, structurally controlled failure.  

 

Figure 3 Workflow adopted for probabilistic analyses to test the reliability-based design acceptance criteria 
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Uncertainty in rock mass strength properties was quantified using stochastic models. These models represent 

variables generated through defined PDF for σci, mi and GSI were used to randomise rock mass failure 

envelopes using the generalised Hoek–Brown criterion (Hoek et al. 2002). The Hoek–Brown criterion is 

expressed by Equations 1 to 4: 

  (1) 

  (2) 

  (3) 

  (4) 

where: 

mb, s and a = material constants. 

GSI    = geological strength index. 

D    = disturbance factor. 

The D factor in this study was set as zero in order to study the undisturbed rock mass behaviour.  

The dependence between the variables UCS and mi was calculated through the Pearson correlation 

coefficient, which was obtained from data collected from published values of five porphyry copper deposits 

located in the region. To create dependent variables, the method described by Phoon & Ching (2015) was 

adopted. The method adopted begins with the modelling of two independent standard normal random 

variables (Zi, Zj). Subsequently, the Pearson correlation coefficient is introduced to model two dependent 

variables (Xi, Xj) according to Equations 5 and 6: 

  (5) 

  (6) 

where δij = Pearson correlation coefficient. 

Since the dependent variables follow a normal distribution they can be transformed into a different 

distribution shape, such as lognormal distribution. The transformation from normal to lognormal distribution 

can be achieved using Equations 7 to 9: 

  (7) 

  (8) 

  (9) 
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where: 

λi = mean of ln(Y). 

ζi = standard deviation of ln(Y). 

μ = mean of Yi. 

When adopting generalised Hoek–Brown failure criteria, the input of dependent parameters is often not 

supported by many commonly used industry software packages. Consequently, each non-linear Hoek–Brown 

failure envelope was transformed to equivalent linear Mohr–Coulomb criteria. This was done following 

common practice for pit slope probabilistic analyses. As the conversion to Mohr–Coulomb requires the 

definition of confining stress limits, these can be defined by the method proposed by Rafiei Renani 

& Martin (2020). This method evaluates the confining stress using Equation 10: 

  (10) 

where: 

H = slope height. 

y = unit weight. 

β = slope angle. 

Hence, the equivalent Mohr–Coulomb parameters were found using the equations suggested by Hoek et al. 

(2002, 2018) shown in Equations 11 to 13: 

  (11) 

  (12) 

  (13) 

where: 

c = equivalent cohesion. 

φ  = equivalent friction angle. 

Kinematic evaluations and statistical analyses on discontinuity information projected onto the stereonet 

using DIPS v. 8.0 (Rocscience Inc. 2022) were completed to calculate the variability in the orientation of 

geological structures. This aimed to observe the influence of epistemic uncertainty associated with structural 

orientation on the distribution of the stochastic calculations of FoS. The shear strength of the geological 

structures throughout the stability analysis were kept with its deterministic values. Hence the outcomes of 

the kinematic evaluation were incorporated implicitly and explicitly in the probabilistic slope stability 

analysis.  

Three scenarios were considered and defined based on the level of engineering effort and structure 

reliability. These scenarios illustrate the enhancement of the reliability level in the open pit slope design. 

The first scenario represents a pre-mining slope design characterised by limited information. The uncertainty 

of the intact rock mass parameters was characterised using information from Figure 1. The phreatic level was 

assumed in the first scenario based on the groundwater conditions chart proposed by Hoek & Bray (1981). 
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The second scenario represents an implemented phase slope design characterised by improved lithological 

and structural information. The uncertainty of the intact rock mass parameters is characterised using 

information obtained from Rapiman & Sepulveda (2006). The third scenario represents an advanced phase 

slope design that comprises extensive information collected from previous phase-pit excavations and from 

back-analyses of localised failures. The rock mass strength parameters are characterised through 

back-analyses criteria, in accordance with the published calibration (Hustrulid et al. 2001). 

The results from the scenarios evaluated are plotted against the 2020 RBDAC matrix to illustrate the changes 

of reliability levels in terms of pairs of FoS–PoF and COVFoS (the coefficient of variation is used as an indicator 

of design reliability). To validate the shape of the distributions obtained, the goodness of fit is tested using a 

Q-Q plot and Kolmogorov–Smirnov test. Then the 2020 RBDAC is further utilised to illustrate its application 

by designing a pushback and compar with a design targeting the 2009 DAC presented by Read & Stacey (2009) 

in the Guidelines for Open Pit Slope Design. The comparison between the two designs shows the advantages 

of the 2020 RBDAC over the 2009 DAC in the slope optimisation expressed in terms of the volume excavated. 

4 Results and discussion 

4.1 First scenario: limited information at the pre-mining phase 

A slope design for the pre-mining phase of an open pit mining operation needs an initial assessment, which 

focuses mainly on defining potential slope configurations. The rock mass properties were chosen from a 

review of the literature. A generic slope configuration with a slope height of 250 m and an overall slope angle 

(OSA) of 43° was chosen. The COV of UCS and mi considered were 0.90 and 0.31, respectively. Likewise, the 

mean UCS and mi were 70 MPa and 26 (Read & Stacey 2009; Hustrulid et al. 2001; Phoon & Retief 2016).  

The rock mass was assumed to be blocky and of fair quality, therefore a range of GSI between 35 and 55 

(based on the descriptions reported in literature in Hustrulid et al. 2001) was adopted. A lognormal 

distribution was assigned to the UCS and mi, while a uniform distribution was assigned to the GSI. Figure 4 

illustrates the relationships between UCS and mi based on data collected from five porphyry copper deposits 

in the region. The Pearson correlation coefficient obtained is approximately -0.5.  

 

Figure 4 Relationship between uniaxial compressive strength and mi for the five porphyry copper deposits 

in the region 
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Figure 5 shows the process for the modelling of dependent parameters through the Pearson correlation 

coefficient, statistical measures and assigned adequate PDFs. These dependent parameters, along with the 

GSI, were used to define the Hoek–Brown envelopes which were subsequently transformed to equivalent 

Mohr–Coulomb parameters. Given the slope configuration, the confining stress was calculated using 

Equation 10.  

 

Figure 5 Process for the development of PDFs of dependent parameters (UCS and mi). The flow illustrates 

how two sets of correlated normal distributions are built and then scaled to the parameter 

distributions 

Figure 6 illustrates the equivalent cohesion. The goodness of fit was tested through a Q-Q plot as shown in 

Figure 6c. The results from the Kolmogorov–Smirnov test at the 5% significance level for lognormal 

distribution (test statistics 0.08 and a p-value 5.0E-06) and for gamma distribution (test statistics 0.11 and a 

p-value 2.1E-11) indicated a high discrepancy between the observed results and the theoretical distribution. 

Based on both tests, a lognormal distribution was selected to fit the observed data with a mean of 0.69 MPa 

and COV of 0.33. Figure 6b illustrates the equivalent friction angle. The goodness of fit was tested through a 

Q-Q plot as shown in Figure 6d. The results from the Kolmogorov–Smirnov test at the 5% significance level 
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for normal distribution (test statistics 0.02 and a p-value 0.58) and for lognormal distribution (test statistics 

0.04 and a p-value 0.08) indicated a good agreement with the observed results and the theoretical 

distribution. As the results of the normal distribution were greater than the lognormal distribution, a normal 

distribution was selected to fit the observed data, with a mean of 56° and COV of 0.09. 

 

Figure 6 Calculated equivalent Mohr–Coulomb parameters and goodness of fit assumed in scenario 1: 

(a) PDFs for cohesion; (b) PDFs for friction angle; (c) The Q-Q plot for cohesion; (d) The Q-Q plot 

for friction angle 

The geological structures were examined through stereographic projections aiming to identify possible 

orientation ranges that could impact slope stability. Figure 7 shows the principal sets identified. The adopted 

criteria include for analysis all geological structures whose dip direction does not deviate by more than 30° 

from the slope’s dip direction. Given the slope orientation, Set A, which strikes nearly perpendicular, was 

considered the main large-scale structure that could affect slope stability. This set was further integrated into 

the probabilistic analysis.  
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Figure 7 Scenario 1: (a) Main structural orientation of large-scale structures; (b) Structural orientation of 

planar/wedge-type structures. OSA is the overall slope angle and orientation 

Figure 8a shows the calculated FoS and PoF of the isotropic analysis considering a rock mass strength failure 

mechanism. The mean value of FoS (2.62) can be considered relatively high, while the PoF is very small. 

Figure 8b shows the calculated FoS and PoF of the anisotropic analysis considering a structurally controlled 

failure mechanism. The mean FoS (2.21) is approximately 16% lower than the isotropic analysis, although the 

variation of PoF is negligible in both analyses. From these results, the slope configuration can be deemed 
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over-conservative. However, this generic slope configuration should only be considered as a preliminary 

geometry for future analysis. 

 

(a) (b) 

Figure 8 Limit equilibrium analysis results for (a) Rock mass strength failure; (b) Structurally controlled 

failure, scenario 1 

The results from the Monte Carlo simulation for the isotropic analysis follow a lognormal distribution, as 

shown in Figure 9a. Figure 9b shows the Q-Q plot to test the goodness of fit. The Kolmogorov–Smirnov test 

results for lognormal distribution (test statistics 0.03 and a p-value of 0.52) suggest that the observed data 

adequately follow a lognormal distribution.  

 

(a) (b) 

Figure 9 (a) Calculated distribution of FoS for scenario 1 considering failure through the rock mass; 

(b) The Q-Q plot of the lognormal distribution fit 

The results from the Monte Carlo simulation for the second analysis are shown in Figure 10a, where the PDF 

follow a lognormal distribution. Figure 10b shows the Q-Q plot to test the goodness of fit. The Kolmogorov–

Smirnov test results for lognormal distribution (test statistics 0.02 and a p-value of 0.68) suggest that the 

observed data adequately follow a lognormal distribution. The lognormal distribution and the calculated COV 

in both analyses are consistent with the PDF and values assumed for moderate design reliability by Macciotta 

et al. (2020).  
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(a) (b) 

Figure 10 (a) Calculated distribution of Factor of Safety for scenario 1 considering structurally controlled 

failure; (b) The Q-Q plot of the lognormal distribution fit 

4.2 Second scenario: increased design reliability 

This scenario represents a implemented phase slope configuration. The overall slope angle of the slope 

configuration is 36° at a slope height of 255 m. The COV for the UCS and mi were obtained based on 

site-specific data. The COV of UCS for the major lithological units (granodiorite and andesite) was 0.4. The 

COV of the mi of 0.20 was adopted for both lithological units. The COV for the GSI of the site was 0.16 and 

0.10 for the granodiorite and andesite. The PDF selected was lognormal distribution for UCS and mi, and a 

normal distribution for GSI. The dependence between variables was built assuming the same Pearson 

correlation coefficient obtained previously. 

Figure 11 shows the resultant equivalent Mohr–Coulomb parameters and the Q-Q plots for the fitted 

distributions for the granodiorite rock unit. The Kolmogorov–Smirnov test results for equivalent cohesion 

following a lognormal distribution (test statistics 0.03 and a p-value 0.28) and for equivalent friction angle 

following a normal distribution (test statistics 0.03 and a p-value 0.26) suggest close agreement between the 

observed data and the fitted distribution. 

 

Figure 11 PDFs of equivalent Mohr–Coulomb parameters for the granodiorite unit assumed in scenario 2: 

(a) Cohesion; (b) Friction angle. The Q-Q plots for: (c) Cohesion; (d) Friction angle 
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Figure 12 shows the resultant equivalent Mohr–Coulomb parameters and the Q-Q plots for the fitted 

distributions for the andesite rock unit. The Kolmogorov–Smirnov test results for equivalent cohesion 

following a lognormal distribution (test statistics 0.03 and a p-value 0.21) and for equivalent friction angle 

following a normal distribution (test statistics 0.02 and a p-value 0.88) suggest close agreement between the 

observed data and the fitted distribution. 

 

Figure 12 PDFs of equivalent Mohr–Coulomb parameters for the andesite unit assumed in 

scenario 2: (a) Cohesion; (b) Friction angle. The Q-Q plots: c) Cohesion; (d) Friction angle 

Figure 13 shows the stereographic projection of the large-scale structures and orientation of the slope. 

Four main structural sets are identified. One set has been identified to be adversely oriented. Set E is a 

non-daylighting planar structure, and the non-daylighting wedge formed in combination with Set G can 

contribute to developing multi-bench instability.  
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Figure 13 Scenario 2: (a) Main structural orientation of large-scale structures; (b) Structural orientation of 

planar/wedge-type structures 

Figure 14a shows the calculated FoS–PoF for the upper, lower inter-ramp and overall slopes. The failure 

surfaces for the three slopes are non-circular and shear through the rock mass. The obtained FoS–PoF suggest 

a stable configuration but with high values of FoS, mainly in the upper inter-ramp slope. Further integration 

of large-scale structures into the analysis results in lower FoS–PoF (see Figure 14b). However, the PoF in both 

cases is negligible.  
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(a) (b) 

Figure 14 Limit equilibrium analysis result for: (a) Rock mass strength failure; (b) Structurally controlled 

failure, scenario 2 

The results from the Monte Carlo simulation are shown in Figure 15. The Q-Q plot for each PDF plotted in 

Figure 15 suggest that lognormal distribution represents the observed data. The Kolmogorov–Smirnov test 

results of the Overall slope (test statistics 0.03 and a p-value 0.57), lower inter-ramp slope (test statistics 0.03 

and a p-value 0.56), and upper inter-ramp slope (test statistics 0.02 and a p-value 0.85) suggest a consistency 

to the lognormal distribution. The calculated COVFoS is 0.12 for the overall slope and 0.16 for the upper 

inter-ramp slope. 

 

Figure 15 Calculated distribution of FoS for scenario 2 considering rock mass strength failure for (a) Overall 

slope; (b) Lower inter-ramp slope; (c) Upper inter-ramp slope. The Q-Q plot of the distribution 

fitted for each Monte Carlo simulation: (d) Overall slope; (e) Lower inter-ramp slope; (f) Upper 

inter-ramp slope 
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Figure 16 shows the results from the Monte Carlo simulation. The Q-Q plot for each PDF plotted in Figure 16 

suggests that lognormal distribution represents the observed data. The Kolmogorov–Smirnov test results of 

the overall slope (test statistics 0.02 and a p-value 0.69), lower inter-ramp slope (test statistics 0.03 and a 

p-value 0.53) and upper inter-ramp slope (test statistics 0.03 and a p-value 0.51) suggest a consistency to the 

lognormal distribution. The calculated COVFoS is 0.10 for the overall and lower inter-ramp slopes, and 0.13 

for the upper inter-ramp slope. The lognormal distribution and the calculated COVFoS in both analyses are 

consistent with the PDF and values assumed for high design reliability in Macciotta et al. (2020).  

  

Figure 16 A calculated FoS distribution for scenario 2 considering structurally controlled failure for (a) Overall 

slope; (b) Lower inter-ramp slope; (c) Upper inter-ramp slope. The Q-Q plot of the distribution 

fitted for each PDF: (d) Overall slope; (e) Lower inter-ramp slope; (f) Upper inter-ramp slope 

4.3 Third scenario: very high design reliability at a mature phase of operations 

This scenario represents a mature phase slope design where the lithological units are subdivided in more 

detail. The rock mass strength parameters are expressed in terms of equivalent cohesion and friction angle. 

The PDF adopted was normal distribution. The COV was assumed in this scenario as no exact values were 

reported. Therefore, a COV of less than 0.15 was chosen for equivalent cohesion and a COV of less than 0.10 
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for an equivalent friction angle was chosen. Table 1 summarises the rock mass strength parameters (Hustrulid 

et al. 2001). 

Table 1 Calibrated rock mass strength properties assumed in scenario 3 

Rock unit 

Mohr–Coulomb parameters 

Cohesion (kPa) Friction angle (deg) 

Mean COV Mean COV 

Altered granodiorite 40 <0.15 25 <0.10 

Moderate granodiorite 150 <0.15 28 <0.10 

Silificated granodiorite 780 <0.15 36 <0.10 

Andesite 150 <0.15 31 <0.10 

The structural information of the slope sector is plotted in Figure 17. Four sets are identified. The kinematic 

evaluation indicates that Set H is a subparallel structure that governs the stability of the slope.  

 

Figure 17 Scenario 3: (a) Main structural orientation of large-scale structures; (b) Structural orientation of 

planar/wedge-type structures 
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The Set H was incorporated in the limit equilibrium analysis through generalised anisotropic strength. 

Figure 18a shows the critical failure surface and the attributed influence of the large-scale structure. 

The calculated mean FoS is 0.98, with a PoF of 63.3%. Another approach that includes large-scale structures 

explicitly was also considered. Results from this approach are shown in Figure 18b. The calculated mean FoS 

is 1.01, and PoF of 42.40%.  

 

(a) (b) 

Figure 18 Limit equilibrium results of back-analysis considering the large-scale structures: (a) Implicitly; 

(b) Explicitly, scenario 3 

Both approaches illustrate similar failure paths, although the implicit approach is sensitive to the extension 

and continuity of the structures. The results from the Monte Carlo simulation and Q-Q plot for the implicit 

approach are shown in Figure 19. The calculated COV is 0.05, and the goodness of fit using a Q-Q plot of 

Kolmogorov–Smirnov test results (test statistics 0.03 and a p-value 0.50) suggests that normal distribution 

adequately fits the observed data.  

 

(a) (b) 

Figure 19 (a) Calculated distribution of FoS for scenario 3 considering large-scale structures implicitly; 

(b) The Q-Q plot of the distribution fitted 

Similarly, the results of the Monte Carlo simulation and the Q-Q plot for the explicit approach are shown in 

Figure 20. The calculated COV remains the same as in the previous analysis. The Q-Q plot, along with the 

Kolmogorov–Smirnov test results (test statistics 0.03 and a p-value 0.53), suggest the observed data follow a 

normal distribution.  
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(a) (b) 

Figure 20 (a) Calculated distribution of FoS for scenario 3 considering large-scale structures explicitly; 

(b) The Q-Q plot of the distribution fitted 

4.4 Reliability-based DAC 

Throughout the scenarios analysed it has been observed that as site-specific data is incorporated, there is a 

notable reduction in both natural variability and epistemic uncertainty (see Figure 21). This reduction in 

uncertainty enhances the reliability level of the design as defined by the calculated COVFoS. Moreover, the 

integration of large-scale structures on probabilistic slope stability analysis increases reliability as it provides 

defined critical failure paths.  

 

(a) (b) 

Figure 21 (a) PDFs for overall scale of rock mass strength failure; (b) PDFs for the overall slope of 

structurally controlled failure 

The calculated pairs of FoS–PoF and associated COVFoS are summarised in Table 2.  
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Table 2 Summary of FoS–PoF pairs and COVFoS obtained from the three scenarios evaluated 

Scenario Slope 

design 

Slope 

height 

(m) 

Slope 

angle 

(deg) 

Analysis Factor 

of 

Safety 

(FoS) 

Probability 

of failure 

(PoF) 

COVFoS 

1 
Overall 

slope 
250 43 

Isotropic 2.62 0.00 0.22 

Anisotropic (implicit) 2.21 0.00 0.21 

2 

Overall 

slope 
255 36 

Isotropic 1.97 0.00 0.12 

Anisotropic (implicit) 1.52 0.00 0.10 

Upper inter-

ramp slope 
66 41 

Isotropic 4.50 0.00 0.16 

Anisotropic (implicit) 2.54 0.00 0.13 

Lower inter-

ramp slope 
189 41 

Isotropic 2.08 0.00 0.12 

Anisotropic 1.48 0.00 0.10 

3 
Overall 

slope 
560 30 

Anisotropic (implicit) 0.98 67.40 0.05 

Anisotropic (explicit) 1.01 43.20 0.05 

Figure 22 shows the results from Table 2 plotted on the 2020 RBDAC. The values enclosed by parenthesis 

within the matrix represent a mean value following a normal distribution, and the other values represent a 

mean value following a lognormal distribution. The calculated pairs of FoS–PoF and COVFoS obtained from 

scenarios 1 and 2 would correspond to ranges defined for a very high level of economic consequence. 

Scenario 3 is a case of unsuccessful performance of an implemented slope design. Results showed that the 

scenario did not meet the 2020 RBDAC. 

 

Figure 22 Plot of COVFoS–FoS (left) and COVFoS–PoF (rigth) results in the 2020 RBDAC 

These results highlight the importance of understanding uncertainties and the associated reliability so as to 

improve the risk-informed design process.   
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4.5 Use of the RBDAC for design 

Based on the results from scenario 3, the higher reliability gained can be leveraged to develop a pushback 

balancing risk and reward. Incorporating large-scale structures into stability analysis highlights the role of 

uncertainty of the structural model in the FoS–PoF outcomes. Moving forward to the next phase, a slope 

design should be developed, leveraging the achieved level of reliability in the geotechnical components. 

In this regard, to determine an optimum configuration, the level of detailed engineering gained from scenario 

3 was used as a basis for evaluating potential slope configurations. The slope configuration was assessed with 

a focus on maintaining adequate safety levels and achieving business rewards. A slope configuration was first 

evaluated targeting the 2020 RBDAC. The design is interpreted to be associated with a high to very high 

economic consequence, targeting a minimum FoS of 1.2 and a maximum PoF of 10%, according to the 2020 

RBDAC. The slope stability analysis for the suggested slope configuration considered for the next pushback is 

shown in Figure 23. The design considers mitigative adjustments such as slope flattening and the unloading 

of about six benches.  

 

Figure 23 Limit equilibrium analysis results for the next pushback targeting the 2020 RBDAC 

The analysis results in Figure 23 suggest a more conservative inter-ramp slope and a reduction in 1° of the 

overall slope angle to meet the target 2020 RBDAC. Table 3 summarises the calculated pairs of FoS–PoF and 

COVFoS. The results meet the 2020 RBDAC, and the COVFoS are in line with the range defined in the matrix of 

the 2020 RBDAC. This design can be considered feasible. 

Table 3 Summary of the limit equilibrium analysis for the design proposed for the next pushback 

Slope design Angle (deg) Height (m) FoS PoF (%) COVFoS 

Inter-ramp 

slope  

26 150 1.61 0.0 0.09 

34 225 1.32 1.7 0.11 

26 210 1.21 4.5 0.10 

Overall slope  29 540 1.22 0.6 0.07 

Conversely, designing with the 2009 DAC that suggests a minimum FoS of 1.3 for overall scale could increase 

the stripping cost, thus reducing the business reward. To this end, a slope configuration was developed to 

meet the 2009 DAC. Figure 24 shows the limit equilibrium analysis targeting the 2009 DAC. The analysis 

results in Figure 24 suggest that OSA should be decreased by 1° compared to the design targeting the 2020 

RBDAC. Additionally, the slope design targeting the 2009 DAC will result in mining an additional 30.61 Mt 
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considering a total pit sector length of 500 m affected by this design. The volume calculated is an estimate, 

however, three-dimensional analysis can provide more precise values. 

 

Figure 24 Limit equilibrium analysis results for the next pushback targeting the 2009 DAC 

Figure 25 shows a comparison between the slope design targeting the 2009 DAC and 2020 RBDAC. 

The comparison shown in this figure provides insights into potential trade-offs between safety, excavation 

volume and economic benefits by adopting the 2020 RBDAC. 

 

Figure 25 Slope design configurations for the next pushback targeting both the 2020 RBDAC and the 2009 

DAC 

5 Conclusion 

The flexibility and the applicability of an RBDAC in the slope design are demonstrated in this paper. 

A parametric study was adopted to assess the influence of uncertainties in the slope design process through 

probabilistic slope stability analyses. Three scenarios have been evaluated considering different levels of 

engineering effort. Throughout the scenarios analysed, it has been observed that as specific data such as rock 

mass properties and geological structures are incorporated, the uncertainty is reduced, thus increasing the 

reliability of the slope design.  

The methodology adopted in this study follows the state of practice in the design of open pit slopes. The COV 

has been adopted in this study as a measure of uncertainty. The input parameters for the rock mass 
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parameters have been evaluated through adequate probabilistic density functions. Moreover, the geological 

structures have been evaluated through stereographic projections. It has been observed that integration of 

geological structures in the stability analysis leads to a reduction in the COV of the FoS distribution. 

The results of the first scenario show moderate reliability for a very high consequence category, while the 

second scenario demonstrates high reliability. The third scenario incorporates a back-analysis of a mature 

slope configuration and shows high reliability. 

A comparison between the RBDAC matrix and the 2009 DAC has been conducted for a pushback design. 

The RBDAC matrix results in a 1° difference in the overall slope angle and requires a lower mining volume 

compared to the 2009 DAC. The study demonstrates the practicality and flexibility of the RBDAC matrix and 

highlights the potential optimisation gains by considering increased knowledge of slope performance and 

design reliability. Evaluating design reliability based on specific engineering efforts and risk assessment is 

essential for slope design optimisation. 
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