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Abstract 

This paper examines the meaning of calibration and validation in rock engineering design, highlighting several 

challenges and limitations associated with these processes. There exist two fundamental limitations: i) the 

inability to rely on engineering judgement as a substitute for proper calibration and validation, and ii) the use 

of qualitative characterisation methods introduces subjectivity in the data subsequently used for calibration 

and validation. Furthermore, varying modelling conceptualisations result in a paradoxical situation whereby 

the same problem analysed using different numerical models requires a different set of parameters, which 

can all be claimed to be calibrated. The author acknowledges that some of the points raised in this paper may 

encounter objections. However, by ignoring the epistemic limits of calibration and validation, there is the risk 

of letting engineering faith become the excuse behind the tendency to replace model validation with model 

acceptance. 
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1 Introduction 

Calibration and validation are critical in assessing the accuracy and reliability of numerical models used in 

engineering design processes. While these terms are often used interchangeably, it is important to 

understand their distinct meanings and implications. Calibration refers to adjusting a model’s parameters or 

inputs to agree with observed data. Calibration aims to minimise the discrepancy between model outputs 

and observed data, making the model more reliable for future predictions. Validation involves testing the 

model’s predictive capability against independent data not used during calibration. 

Both calibration and validation are vital for accurate decision-making and permitting in mining developments. 

Calibrated models allow engineers to make informed decisions based on field observation predictions. 

Validated models, on the other hand, establish the model’s credibility by demonstrating its ability to 

generalise to unseen scenarios, instilling confidence in the model’s application to new mining projects. 

While engineers often focus on the technical aspects of the design process, it is essential to communicate 

the nuances of calibration and validation to the broader community. This is particularly crucial in mining 

projects, where the risks associated with such developments can have significant environmental, social and 

economic impacts. Accordingly, this paper focuses on presenting something other than visually captivating 

numerical results. Instead, this paper will discuss the meaning and limitations of calibration and validation. 

It is understood that some of the questions raised in this paper will encounter strong resistance. However, 

openly discussing calibration and validation processes can help bridge the gap between technical expertise 

and community understanding. It enables effective communication of the model’s accuracy, limitations and 

associated uncertainties to rightsholders and stakeholders, fostering trust and facilitating informed 

discussions about the risks and benefits of mining projects. 

1.1 Towards a holistic approach to slope design 

As shown in Figure 1, the technical scope of open pit design includes advanced numerical modelling and 

analytical methods to evaluate the behaviour of rock masses. This approach employs tools like finite element 

analysis, discrete element modelling or other hybrid forms of numerical simulations to study the rock mass’s 

response to proposed design conditions. Numerical models allow for detailed analyses of complex 
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geotechnical problems and provide quantitative insights into the performance of open pits. Likewise, they 

enable engineers to optimise designs, assess different scenarios and predict potential failure modes. 

Note that we have purposely used italic for the term ‘quantitative’ since many of the input parameters used 

in open pit design are qualitative (Yang & Elmo 2022; Harrison 2017). The quantification problem will be 

raised in several parts of this paper since it is intrinsic to calibration and validation. 

 

Figure 1 Slope design process (adapted from Read & Stacey 2009, Figure 1.4) 

Figure 1 suggests a seamless flow of quantitative information from models to analysis, reinforcing an 

incorrect narrative of a quantitative design approach that can be easily calibrated and validated. However, 

there exist significant limitations to this approach, including: 

• The processes of calibration and validation are only possible with independent data. However, new 

open pit mines are designed before developing access to pit walls. Under these conditions, we 

cannot access all the independent data required to calibrate and validate our rock mass models 

(e.g. fracture size). Furthermore, our decision-making process is more likely to be influenced by 

‘anchoring’ bias that occurs when we place too much emphasis on the first piece of information we 

receive (known as the ‘anchor’) and use it as a reference point for all subsequent information (e.g. 

rock mass strength parameters). The problem of anchoring bias applies indistinctly to green sites 

and existing operations (e.g. pushbacks, pit optimisation, double benching etc.). 

• The current design approach transforms qualitative assessments (e.g. classification of Geology, 

Structures and Rock Mass data, Figure 1) into calibrated quantitative measurements (Final Design, 

Figure 1). This transformation occurs by manipulating the natural variability of rock masses and the 

subjective nature of characterisation/classification methods to justify using specific input 

properties that fit the assumed modelling approach. This aspect leads to two significant 

consequences: 
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○ Engineering judgement cannot be used as a substitute for proper calibration and validation 

processes; and 

○ The labels calibrated and validated apply to the modelling output, not the input. An incorrect 

practice exists of describing rock mass strength parameters (input) as calibrated or validated 

simply because the modelled deformations match field measurements. Differences in models’ 

conceptualisation lead to different modelling inputs and the paradox of rock mass strength 

parameters that remain calibrated despite changing from model to model. 

• Pit slopes are excavated, not built. This semantic problem results in technical differences between 

what we define as an active design process (building – controlled by known knowns and known 

unknowns) and a reactive design process (excavating – controlled by unknown conditions). 

The excavation process is complicated by the need to manage different forms of uncertainty, 

including unknown uncertainty (Elmo & Stead 2020). The insistence on using qualitative 

characterisation methods complicates the matter as it introduces a degree of subjectivity in the 

way we collect and manage the same data used to calibrate and validate our numerical models. 

There is also a compound effect when qualitative data are used to validate assumptions based on 

engineering judgement since both terms of the validation process (data and judgement) remain 

subjective. The resulting validation process gives rise to confirmation bias. 

• The overall design process treats pit slopes as large and complex engineered (i.e. built) structures 

that obey specific mathematical rules. The commonly accepted wisdom is that knowing the rules 

describing the configuration of engineered structures leads to the conclusion that their behaviour 

is entirely predictable. While mathematical rules control rock mass behaviour, unpredictable 

behaviour remains possible. This raises the question of whether models calibrated and validated 

using observed data can capture unpredictable behaviour. Quoting Taleb (2010), ‘How can we know 

the future, given knowledge of the past, or more generally, how can we figure out properties of the 

infinite unknown based on the finite knowns?’. Two major anthropogenic slope failures confirm the 

conclusions by Taleb (2010): 

○ The Manefay landslide (Bingham Canyon mine, Ross 2017), where attempts to predict the 

failure run-out were based on experience and understanding of other failures at the mine. As a 

result, the models were not trained to simulate unknown conditions. Therefore, they could not 

predict the actual run-out velocity of the failed material and that the failure eventually 

consisted of two separate significant events. 

○ In 1961 and 1962, physical experiments were conducted to study the potential tsunami that 

might be caused by a large landslide falling in the Vajont reservoir. Indeed, a large relic landslide 

was discovered as early as 1959 along one of the flanks of the reservoir. The dam was 

completed in 1962. The experiments considered scenarios designed by engineers, based on 

their knowledge and experience. None of the experiments included the scenario that 

eventually unfolded on 9 October 1963, leading to one of the most significant engineering 

disasters in history (more than 2,000 people perished as massive flooding destroyed several 

villages and towns). The Vajont tragedy teaches us that when discussing the process of 

calibration and validation, we need to acknowledge that there is no assurance that engineering 

judgement may lead to clearly identifying conclusions that are not correct (Elmo et al. 2022). 

• In Figure 1, mine closure is the last step in the overall pit design process. On this basis, it reflects a 

‘limited use’ approach to mine design opposite to the ‘continued use’ of the land by the 

rightsholders. A mine operation represents a temporary alteration of the original land use, which 

must be re-established upon closure. In this context, the problem of model calibration and 

validation goes beyond a pure engineering scope and is translated into the need to communicate 

our results to communities who want to be informed about the long-term stability and impact of 

pit slopes. Therefore, pit design should include time as an important aspect of stability analysis. 

The best-designed open pit is not the one that fails just after mine closure but the one that does 
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not fail within a measurable time window that different generations can experience (e.g. 100–150 

years into the future). In Figure 2 we propose a modified version of Figure 1 that sees mine closure 

elevated to a component of the stability analysis phase to include technical, permitting, social and 

environmental constraints as part of the stability analysis. 

 

Figure 2 Revised slope design process to better include the importance of mine closure considerations 

2 Calibration and validation 

Calibration involves adjusting model parameters to match observed data, while validation focuses on 

evaluating the model’s predictive capabilities against independent data. This distinction is crucial, as it 

impacts the models’ applicability and the conclusions derived based on the modelling results. A calibrated 

model is not a validated model, but a validated model is a calibrated model. 

Model calibration entails fine-tuning the model parameters to achieve a close agreement between simulated 

results and observed data. Calibration is a necessary step to improve the representativeness of a model. 

While in principle it is possible to calibrate (and validate) a numerical model using data from an existing mine 

operation (Site A), the same model cannot be said to be calibrated (nor validated) when using it to study the 

stability of a new mine operation (Site B) since independent data for Site B will not become available until 

the implementation and monitoring stages. 

As stated above, calibration alone does not guarantee the model’s predictive capabilities or its ability to 

capture the underlying physical mechanisms. The model may reproduce observed data (e.g. slope 

deformations), but it may fail to replicate the fundamental behaviours or mechanisms that govern the system 
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being studied. For example, when one considers the problem shown in Figure 3, any intervening 

simplification process adopted to reduce run times and improve mesh quality impacts the observed results 

(Shapka-Fels & Elmo 2022). As a result, we must accept that four potentially different sets of calibrated rock 

mass properties exist because of four different rock mass model representations. Claiming, for example, that 

models (A) and (D) are both calibrated (and validated) results in the following two corollaries, which could 

have significant ramifications when communicated outside of a rock engineering context: 

• Rock mass behaviour exists in an undefined state, and it can simultaneously be continuum and 

discontinumm. 

• The simplification assumptions we make in our models concerning the rock mass structural 

character do not impact the predictive capabilities of our numerical models. 

 

Figure 3  Example of how modelling trades structural complexity (inserts C and D) for geometrical 

simplicity (inserts A and B). Modified from Shapka-Fels & Elmo (2022) 

For the behaviour of Model (A) to agree with that of Model (D), we would need to assume that either rock 

mass behaviour is isotropic or somehow incorporate anisotropic effects in Model (D). In contrast, we can 

justify using intact rock properties in Model (A) for the rock matrix. Models (B) and (C) would require deriving 

some form of intermediate rock mass upscaling. However, this raises important questions about the 

simplification process, including how to decide which joints to keep and which joints to simulate implicitly. 

This problem was demonstrated by Karimi et al. (2020), who showed that jointed configuration 

independently simplified by a senior engineer, a junior engineer and an automated algorithm yielded very 

different results in terms of modelled rock mass strength. Note that the main difference between the three 

models in Karimi et al. (2020) was produced by the adopted simplification process, which resulted in the 

models displaying different degrees of network connectivity while the overall fracture intensity did not 

change. 

More recently, Elmo (2023) demonstrated that two models with an equivalent rock mass quality (i.e. the 

same geological strength index (GSI) – Hoek 1994) but different degrees of network connectivity could yield 

drastically different rock mass responses. These results confirm that the calibration of numerical methods 

should place more emphasis on mechanisms rather than the process of correcting qualitative input data to 

match observations. More importantly, the author believes we must abandon the idea of rock mass ratings 

as quantifiable properties that can be calibrated since it is impossible to calibrate a qualitative condition that 

cannot be measured. 

This brings us to model validation, which aims to assess the model’s ability to predict independent data or 

scenarios. Successful validation imparts confidence in the model’s predictive capabilities and enhances its 

credibility for decision-making purposes. Validation is a crucial test of the model’s reliability and 

generalisability beyond the calibration dataset. It involves comparing model predictions against observations 

or experiments not used during calibration. However, more than this process is required to warrant a 

guarantee of universal validation, and the model validation process is not without questions. The validation 

process should guarantee that the model is not overfitting or tailoring itself too closely to the calibration 

data, which could result in unreliable predictions when applied to new scenarios. This problem ties in with 

the availability of independent validation data and their representativeness of the system under 
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investigation. Another question arises from the uncertainty inherent in the validation process itself. 

Real-world slope problems are complex and governed by numerous factors, many of which are not fully 

quantifiable. This inherent uncertainty introduces a degree of unpredictability, making it difficult to validate 

a model against all possible scenarios definitively. Consequently, model validation is often viewed as an 

ongoing process rather than conclusive, requiring continuous refinement and adaptation to incorporate new 

knowledge and observations. 

Additionally, there is a need for clear criteria to assess the success of model validation. Determining the level 

of agreement or acceptable deviation between model predictions and independent data introduces 

subjectivity. Developing robust validation metrics and guidelines considering quantifiable factors is crucial 

for ensuring consistency and transparency in the validation process. To overcome these challenges, several 

approaches can be considered. First, sensitivity analysis can be employed to assess the influence of different 

parameters and assumptions on model predictions. This analysis helps identify critical factors and sources of 

uncertainty that require further investigation and refinement. Furthermore, integrating multiple lines of 

evidence, such as field measurements, laboratory experiments and monitoring data, can strengthen the 

validation process. Combining diverse data sources and knowledge domains enhances the robustness and 

reliability of model predictions. 

3 The risk of confusing model acceptance with model validation 

We must acknowledge that cognitive biases in our engineering design methods often confuse model 

acceptance with model validation (Yang et al. 2021; Elmo et al. 2022). What can we learn from history that 

applies to calibrating and validating rock engineering mechanisms? For almost 1,400 years, the geocentric 

model (Ptolemy 100 to c. 170 AD) was used to predict planetary motions (and did that reasonably well, 

despite the wrong underlying assumptions). The heliocentric model proposed by Copernicus (1473–1543 AD) 

did not significantly improve predictions of planetary motions over the geocentric model. Still, it broke away 

from a dogmatic view that placed Earth at the centre of the known universe. While the heliocentric and 

geocentric models meet the condition for validation (they predict planetary motions), Kepler (1571–1630) 

showed both to be mechanically wrong in 1609–1616, since neither is Earth at the centre of the solar system 

(heliocentric model) nor are the orbits of the planets in the solar system circular (geocentric model).  

Regarding methods and numerical models used in rock engineering applications, we cannot assume they are 

mechanistically correct (i.e. validated) just because they match observed deformations. Rock engineering 

design is thus exposed to the same non-validation paradox of the heliocentric and geocentric models. Indeed, 

we often rely upon an a priori assumption of the failure mechanisms when calibrating our rock engineering 

models (susceptibility models – Kalenchuk 2019). 

By ignoring the epistemic limit of numerical modelling principles we increase our exposure to risk by replacing 

model validation with model acceptance. When Galileo tried to assert the use of the heliocentric model over 

the geocentric model, his work was not questioned based on the underlying mechanics. Instead, it was 

rejected based on the geocentric model countering cosmological orthodoxy. Likewise, allowing expressions 

like engineering judgement, educated guess and realistic assumptions to infiltrate and somehow control 

numerical analysis confirms the role that cognitive biases play in calibration and validation processes.  

Using behavioural science concepts (Kahneman 2011), it is possible to subdivide design methods used in rock 

engineering into heuristics (System 1) and rational thinking (System 2) methods (Figure 4). Empirical methods 

belong to System 1, while numerical models belong to System 2. Empirical methods are common among rock 

engineering practitioners because of their fast and practical nature, which suits working (everyday) decisions. 

Biases are more prevalent when System 1 is convinced of its correctness and System 2 fails to correctly filter 

or use data and conclusions received from System 1. Furthermore, input for our numerical models is often 

determined using empirical methods that rely on somewhat subjective qualitative assessments. 

Self-acceptance of empirical methods and over-reliance on qualitative assessments is responsible for the 

overlapping between System 1 and System 2 and the transferring of cognitive bias in our numerical modelling 

assumptions and results. 
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Figure 4 Relationship between design methods used in rock engineering in terms of heuristics (System 1) 

and rational thinking (System 2) 

4 The temporal dimension of calibration and validation 

The objective of predictions is to anticipate future conditions. However, there cannot be calibration and 

validation without data. Therefore, calibration and validation inherit the temporal dimensions of the data 

used in the process. Because data cannot exist in the future (except synthetic data), calibrating and validating 

the results of numerical models becomes a challenge when the models are expected to represent a reality 

that either does not physically exist yet (e.g. pre-feasibility and feasibility studies) or cannot be directly 

measured (e.g. intact rock strength versus rock mass strength). This temporal dimension presents a 

significant hurdle in assessing the accuracy and reliability of complex numerical models. 

The process used in rock engineering practice to calibrate numerical models is primarily based on the 

principle of back-analysis (Figure 5). As such, the process is limited by the lack of separate consideration of 

calibration and testing data (Figure 5). Validation of the models is only possible with independent testing 

data. As a result, calibrated models are used to provide design recommendations even though they are not 

technically validated. The issue is often compounded by an a priori assumption about failure mechanisms or 

because data from another site have been used in the calibration process.  

In principle, these limitations may hypothetically be reduced by continuously repeating the calibration 

process as new data becomes available. Under these conditions, the new data become the independent 

testing data, and a continuous calibration process is performed in lieu of the validation process (indirect 

validation). However, two challenges remain: i) while the indirect validation is likely to be conducted using 

data specific to the mine site under consideration, engineers may still decide not to carry out an independent 

mechanistic validation; and ii) if the indirect validation is negative (i.e. the modelling results do not agree 

with the field data), the entire calibration process must be repeated. 
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Figure 5 Flow chart describing the calibration approach generally used in rock engineering design. 

The process is missing the validation step due to the deliberate choice by engineers not to split 

the available information into calibration and testing data 

Figure 6 proposes a different process, which requires the available data to be randomly split between a 

calibration set (COld) and a validation set (VOld). The calibration set is used to train the model, and the 

calibrated model is later tested against the validation set. Should the model fail the validation step, the 

calibration process is repeated by shuffling and subdividing the data into two new calibration and training 

sets. Note that this new and improved process still leads to a validated model with clear temporal limits. 

As discussed earlier, the design assumption that what occurred in the past will repeat itself in the future 

conflicts with the challenge of rock mass predictability. Only by continuously testing the model using newly 

acquired independent data can we extend the temporal boundary of the model’s predictions. 

There is another temporal and cognitive barrier to the problem of calibration and validation. Should the 

predictions made by the model recommend a significant redesign, the new design would become the focus 

of the validation process. It is no longer possible to ground truth the failure of the old design since the 

conditions behind it would have been removed from the project’s temporal dimensions. For example, 

imagine a calibrated and validated model recommending reducing the overall slope angle from 55 to 52°. 

Once the mine proceeds with the new design, verifying whether the slope would have remained stable at 

55° becomes impossible. The need to avoid unpredictability and the lack of prototypes leads to an obedient 

engineering faith in the modelling results. 

The risk of confusing model calibration and model validation with model acceptance D Elmo

340 SSIM 2023, Perth, Australia



 

 

Figure 6 Recommended calibration and validation flow chart 

5 Conclusion 

The terms calibration and validation are widely used when discussing the results of numerical models. In this 

paper we have discussed the meaning of calibration and validation in the specific context of rock engineering 

design. In the discussion, several challenges and limitations were identified, including: 

• Engineering judgement cannot be used as a substitute for proper calibration and validation 

processes. 

• The insistence on using qualitative characterisation methods introduces a degree of subjectivity in 

the way we collect and manage the data used for calibration and validation. 

• Differences in models’ conceptualisation lead to different modelling inputs and the paradox of rock 

mass strength parameters that remain calibrated despite changing from model to model. 

• Using the principle of back-analysis as the basis to calibrate numerical models is such that the 

models are not validated against an independent dataset. 

• Using inductive principles to drive calibration and validation makes the models vulnerable to 

unpredictability (i.e. the models learn from the data and the experience available to the engineers 

at that time). 

Acknowledgement 

The authors acknowledge that some of the points raised in this paper may encounter objections. However, by 

ignoring the epistemic limits of calibration and validation there is the risk of letting engineering faith become 

the excuse behind the tendency to replace models’ calibration and validation with model acceptance. 

References 

Elmo, D 2023, ‘The Bologna Interpretation of rock bridges’, Geosciences, vol. 13, no. 2, https://doi.org/10.3390/geosciences13020033 

Elmo, D, Mitelman, A, & Yang, B 2022, ‘An examination of rock engineering knowledge through a philosophical lens’, Geosciences, 

vol 12, 174. doi.org/10.3390/geosciences12040174 

Constructing models

SSIM 2023, Perth, Australia 341



 

Elmo, D & Stead, D 2021, ‘The role of behavioural factors and cognitive biases in rock engineering’, Rock Mechanics and Rock 

Engineering, vol. 54, no. 1,  https://link.springer.com/article/10.1007/s00603-021-02385-3 

Elmo, D & Stead, D 2020, ‘Disrupting rock engineering concepts: is there such a thing as a rock mass digital twin and are machines 

capable of learning rock mechanics?’, in PM Dight (ed.), Slope Stability 2020: Proceedings of the 2020 International Symposium 

on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 565–576, 

https://doi.org/10.36487/ACG_repo/2025_34 

Harrison, JP 2017, ‘Rock engineering design and the evolution of Eurocode 7’, Proceedings of EG50 Engineering Geology and 

Geotechnics Conference. 

Hoek, E 1994, ‘Strength of rock and rock masses’, International Society for Rock Mechanics News Journal, vol. 2, no. 2, pp. 4–16. 

Kahneman, D 2011, Thinking, Fast and Slow, Farrar, Straus and Giroux, New York. 

Kalenchuk, KS 2019, ‘Canadian geotechnical colloquium: mitigating a fatal flaw in modern geomechanics: understanding uncertainty, 

applying model calibration, and defying the hubris in numerical modelling’, Canadian Geotechnical Journal, vol. 59, no. 3, 

pp. 315–329, https://doi.org/10.1139/cgj-2020-0569 

Karimi, L, Elmo, D & Stead, D 2020, ‘An investigation of the factors controlling the mechanical behaviour of slender naturally fractured 

pillars’, Rock Mechanics and Rock Engineering, vol. 53, no. 11, pp. 5005–5027, https://link.springer.com/article/10.1007 

/s00603-020-02203-2 

Ross, B 2017, Rise to the Occasion: Lessons From the Bingham Canyon Manefay Slide, Society for Mining, Metallurgy & Exploration, 

Littleton. 

Read, J & Stacey, P 2009, Guidelines for Open Pit Slope Design, CSIRO Publishing, Melbourne. 

Shapka-Fels, T, & Elmo, D 2022, ‘Numerical modelling challenges in rock engineering with special consideration of open pit to 

underground mine interaction’, Geosciences, vol. 12, no. 5, https://doi.org/10.3390/geosciences12050199 

Taleb, N 2010, The Black Swan: The Impact of the Highly Improbable, Random House, New York. 

Yang, B & Elmo, D 2022, ‘Why engineers should not attempt to quantify GSI’, Geosciences, vol. 12, no. 11. 

Yang, B, Mitelman, A, Elmo, D & Stead, D 2021, ‘Why the future of rock mass classification systems requires revisiting its empirical 

past’, Quarterly Journal of Engineering Geology and Hydrogeology, vol. 55, https://doi.org/10.1144/qjegh2021-039 

The risk of confusing model calibration and model validation with model acceptance D Elmo

342 SSIM 2023, Perth, Australia


