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Abstract 

The rock mass at Batu Hijau is characterised by the presence of major and intermediate scale faulting that 

impacts slope stability at the inter-ramp scale. This was identified as the key element for any anticipated 

failure mechanism during the next phase of the open pit development. Traditional kinematic analyses of 

planar (one sliding face) and wedge (two sliding faces) failures are carried out at the inter-ramp scale to 

assess stability based on prescribed Factor of Safety (FoS) and Probability of Failure (PoF) measures.  

This case study used a full 3D discrete fracture network (DFN) modelling approach, carried out within the 

FracMan® code, to fully evaluate inter-ramp scaled instabilities. The analysis technique uses a limit 

equilibrium approach to consider the stability of complex polyhedral wedges formed within the slope from 

both explicit wireframed structures and stochastically generated intermediate scale structures. The explicit 

wireframe structures are based on the deterministic fault model from mapping over life of mine. The 

stochastic faults were developed based primarily upon parameter inputs from acoustic televiewer (ATV) 

surveys obtained when drilling in the walls for the next stage of mining. 

For each realisation, the deterministic (explicit) major faults were combined with the stochastically generated 

intermediate scale faults to create a far more realistic description of the slope rock mass fabric in the form of 

a DFN model. The DFN is then searched for potential wedges, with both planar and wedge failing blocks being 

identified. A composite mechanism was explored by checking stability on non-daylighting wedges using the 

limit equilibrium tool. 

Key model input variables were calibrated to match failure volumes recorded from the previous stage of 

mining. The same variables were then projected onto the future mining stage to predict future failure 

volumes. Based on the anticipated structure, comparable results were obtained for blocks greater than 

1,000 m³, considering the larger size of the next mining stage. Results provided a more realistic prediction of 

how the rock mass fabric contributed to instability and gave confidence to optimising slopes at the mine. 

Keywords: discrete fracture network, complex kinematics, limit equilibrium tool, Probability of Failure, Factor 

of Safety 

1 Introduction 

Batu Hijau is a large copper porphyry deposit located on Sumbawa, Indonesia, where production commenced 

in 2000. The open pit at the time of study was at the end of phase 6/beginning of phase 7, with walls 

approaching 800 m deep. Phase 7 design had been confirmed during previous work and a phase 8 concept 

had been approved. The design work undertaken was part of the confirmation of phase 8 to a feasibility level 

of study and was based on 6,000 m diamond core drilling, material sampling, testing and characterisation 

work. Geotechnical analyses for slope design included use of both limit equilibrium (LE) and finite element 

methods. 

A discrete fracture network (DFN) was developed to better understand the complex interaction between the 

structure. The DFN was analysed using complex kinematics (rock block identification) and LE techniques 

(Rogers et al. 2018) to assess instability based on Factor of Safety (FoS) and Probability of Failure (PoF). 

SSIM 2023 – PM Dight (ed.)
© 2023 Australian Centre for Geomechanics, Perth, ISBN 978-0-6450938-6-5

SSIM 2023, Perth, Australia 617

doi:10.36487/ACG_repo/2335_40

https://doi.org/10.36487/ACG_repo/2335_40


 

The workflow outline is described in Figure 1. 

 

Figure 1 Workflow outline adopted for the DFN-LE-tool assessment 

2 Discrete fracture network development 

The rock mass at Batu Hijau is characterised by the presence of northeast and west-northwest trending 

lineaments which may represent arc parallel and arc normal structures associated with tertiary subduction 

(Meldrum 1994), and which were the basis of the DFN. 

2.1 Mapped faults (deterministic) 

Large-scale structure which had been mapped over life of mine was considered high confidence and was 

therefore modelled deterministically. Wireframes were available for these structures, as shown in Figure 2. 

A key assumption was they were considered persistent over the phase 8 pit shell. 

 

(a) (b) 

Figure 2 Mapped wireframes structures: (a) Major structure; (b) Intermediate structure 

2.2 Acoustic televiewer faults (stochastic) 

A large portion of structure identified through ATV survey (95%) are small-scale joints and fractures not 

considered critical to inter-ramp stability as they are non-persistent. Larger structures including faults and 

shears with medium and high confidence status were selected. ATV data used for generation of the DFN is 

shown in Figure 3, which indicates more spread than the mapping data, although this could be a processing 

issue. 
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Figure 3 Wireframe (mapped) faults compared to ATV faults 

2.3 Stochastic fault input parameters 

2.3.1 Orientation 

Orientation data are available from the fault wireframe objects and from observed feature types in the ATV 

data. Stereonet analysis was carried out on the available data to provide a basis for generating stochastic 

fault orientations. Bootstrapping was used to generate stochastic orientations based upon multiple random 

sampling, with replacement and dispersion from an original sample used to create a pseudo-replicate sample 

of fault orientations (Efron 1979). Terzaghi weighting was applied to reduce the impact of drilling bias. 

2.3.2 Fault size analyses 

The length distribution of the modelled fault objects was considered in order to constrain the size of smaller 

stochastic faults. The trace length of wireframe structures was plotted using a power law analysis technique 

at multiple elevations within the project area (Figure 4). Power law analysis reflects the common observation 

that many geological structures show scale invariant properties over large-scale ranges. The power law trend 

is then interpreted and used to constrain the size distribution of stochastic small-scale faults. 

 

Figure 4 Power law analyses on simulated faults 
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2.3.4 Fault intensity analyses 

Discontinuity intensity was undertaken initially by calculating fracture type per unit length (P10) and then 

converting it to a volumetric estimate of fracture area per unit volume (P32) using the Chiles et al. (2008) 

method. Summary statistics and histograms for P10 and calculated P32 values for faults are provided in 

Figure 5. 

   

(a) (b) 

Figure 5 Distributions of (a) measured P10 intensity and (b) computed P32 intensity 

2.3.5 Volumetric intensity and distance to fault 

A broad trend was noted between P32 intensity and distance to mapped major faults, with P32 intensity 

reducing with increasing distance from these faults. The relationship is quite noisy when the raw data are 

viewed and can be more clearly seen by binning the data into fixed distance windows. P32 used as this 

represents a more directionally independent isotropic intensity measure (Figure 6). 

  

(a) (b) 

Figure 6 Relationship between P32 and distance to fault: (a) Raw data; (b) Chart binned data 

Using the developed relationship between P32 and fault distance, P32s were populated within the grid using 

a minimum of 0/m and maximum of 50/m. The distribution of P32 in the grid is similar to the distribution of 

P32 estimated on the ATV intervals and is used to determine local fault potential at that grid cell location. 

The P32s in the grid were scaled to achieve a better match between the estimate ATV P32s. The mean of the 

ATV data (13.54/m) normalised by the mean of the original grid calculated values (11.02/m) was used as a 

scaling factor (1.23). Each P32 value in the grid was multiplied by this factor (Figure 7). 
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(a) (b) 

Figure 7 (a) Comparison between Grid P32 and ATV P32; (b) Scaled grid 

2.4 Stochastic fault generation 

The inputs for stochastic fault generation are outlined in Table 1. Stochastic faults were generated within 

300 m of the pit surface to improve computation times. Structures beyond this limit are unlikely to have any 

influence on stability as they will be locked in by high confinement stresses as well as their likely geometry. 

Table 1 Stochastic fault properties 

Property Constrained by Values 

Fault orientation 

data 

Orientation bootstrapped from wireframe faults 

using inverse distance relationship 

Bootstrapped with dispersion of 

k = 80 

Fault intensity 

data 

Intensity defined by the average logged ATV fault 

intensity (scaled for size truncation) 

Average fault P32 = 0.72 m-1 

After scaling P32 = 0.029 m-1 

Fault size data Power law size analysis Gradient 1.435, min 20 m 

maximum 150 m  

The traces for the mapped major and intermediate (wireframe) faults and stochastic faults generated from 

the DFN are projected onto the phase 8 pit design as shown in Figure 8. Typically, the stochastically generated 

faults are at a scale in between the major deterministic faults and joints which will impact stability at the 

inter-ramp scale. 

 

Figure 8 Deterministic (mapped wireframes) and stochastic fault traces mapped onto the phase 8 design 
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3 Geotechnical analyses 

The geotechnical assessment involved running the 3D complex wedge tool within FracMan® (WSP 2023) to 

identify rock blocks. Non-daylighting wedges were analysed using 3D PoF, based on the method of Lawrence 

et al. (2020), which computes a FoS on each block based on an LE approach (Valerio et al. 2020). 

These methods are computationally fast and allow large number of iterations to be performed relatively 

quickly. Input material parameters were calibrated based on phase 6 failure volumes and then applied to the 

phase 8 assessment. 

3.1 Pit shells 

A key element of the assessment is the calibration of the model against the phase 6 site-recorded failure 

volumes, which were typically above bench scale (multi-batter to inter-ramp). Phase 6 and phase 8 pit shells 

are shown in Figure 9, with benches removed for ease of analysis. Pit sector analysis was based on historical 

performance, with sectors shown in Figure 10. 

 

Figure 9 Pit shells used for the assessment (phase 6 and phase 8) 

 

Figure 10 Pit sectors used in analysis  
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3.2 Material properties 

A range of input properties were selected based on statistical distributions identified during the phase 8 

characterisation work. Pore pressure was applied based on the Ru method with a range between 0 and 0.4. 

A summary of the input properties is presented in Table 2. 

Cases Scenarios Rock 

density 

Joint strength Rock strength Pore 

pressure 

Unit 

weight 

(KN/m3) 

Cohesion 

(kPa) 

Friction 

angle 

(deg) 

UCS 

(MPa) 

GSI mi Disturbance

 factor (D) 

Ru 

Base case 1–8 26.5 0 30 98 62 26 0.7 0–0.40 

Low 

discontinuity 

strength 

9–17 26.5 0 20 98 62 26 0.7 0–0.40 

Low rock mass 

strength 
18–26 26.5 0 30 59 45 15 1.0 0–0.40 

Low 

discontinuity 

and rock 

mass strength 

27–35 26.5 0 20 59 45 15 1.0 0–0.40 

Table 2 Material properties adopted for analyses 

3.3 Rock block identification 

Planar and wedge type mechanisms are identified within FracMan’s kinematic wedge tool. Non-daylighting 

blocks held stable by a buttress of rock mass or concave geometries are also identified as per Figure 11. 

A filter was used to only include blocks found less than 100 m below the pit wall surface. This was deemed 

realistic based on historical depth of failure, and anything else was discounted from the analyses. 

 

Figure 11 Rock block identification 
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3.4 Results 

3.4.1 Phase 6 calibration 

Results of the sector analyses (sector 3) for phase 6 are presented in Figure 12, which shows the strength 

cases and pore pressure conditions required to simulate failure volumes recorded during phase 6. 

These conditions were then projected onto the phase 8 assessment. 

   

(a) (b) 

Figure 121 Results of (a) phase 6 sector 9 (Example A) and (b) phase 8 sector 9 (Example B) showing 

conditions required to produce site-recorded failure tonnages 

3.4.2 Phase 8 results 

Results are shown in Table 3 and plotted visually to assess the spatial distribution of blocks in Figure 14. 

Table 3 Results-predicted volumes for calibrated phase 8 

Sector Phase 6 

failed volume 

(m3) 

Conditions to meet phase 6 failed 

volume 

Phase 8 predicted 

failed volume (m3) 

(a) and PoF% (b) 

Comments 

1 140,835 (3%) Base case, Ru 0.2 49,300 (12%)  

3 79,434 (4%) Low discontinuity strength, Ru 0.2 4,190 (28%)  

4 249 (0%) 
No observed provided-assumed 

target base case, Ru 0.15 (c) 
65 (<0.5%) 

Low simulated 

volume for both 

pit shells 

5 167,718 (9%) Base case, Ru 0.1 7,140 (15%)  

6 2,471 (<1%) Base case, Ru 0.2 225 (<0.5%) 

Slight underestimate 

– actual observed 

was at ~Ru = 0.21 

7 93,625 (5%) 
Low discontinuity and rock mass 

strength, Ru 0.2 
9,620 (8%)  

8 111,990 (4%) Low rock mass strength, Ru 0.2 2,000 (3%)  

8A 126,310 (2%) Base case, Ru 0.1 280 (1%) 

Slight underestimate 

– actual observed 

was at ~Ru = 0.12 
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Sector Phase 6 

failed volume 

(m3) 

Conditions to meet phase 6 failed 

volume 

Phase 8 predicted 

failed volume (m3) 

(a) and PoF% (b) 

Comments 

9 99,248 (3%) Base case, Ru 0.05 3,333 (1%)  

9A 61 (0%) 
No observed provided-assumed 

BC 0.05 (c) 
7,750 (4%) 

Low simulated 

volume for both pit 

shells 

10 4,568 (2%) 
Low discontinuity and rock mass 

strength, Ru 0.15 
490 (11%)  

 

 

 

Figure 14 Failed blocks base case strength at Ru = 0.2 

4 Discussion 

Failure volumes are generally lower for the phase 8 shell, though they should be assessed in conjunction with 

PoF. The observed failure volume from failure tonnage records is simulated on the phase 6 pit in all sectors 

except 7. Low rock mass strength and increased pore pressure is required to achieve the observed failure in 

sector 7. Pore pressure is seen to have an immediate effect on stability in the phase 6 pit in Example A. 

Nearly the entire average cumulative volume (~2.9 million m3) has become unstable for all cases at Ru = 0.2. 

There is a smaller range in the base case phase 8 (Example B) failure volumes when compared to phase 6. 

This indicates that a significant number of blocks are locked in (i.e. failure through rock mass is required) and 

will not be affected by variations of pore pressure. 

Limitations of the study include that both designs were assessed without the bench detail so may lack 

accuracy, and blocks greater than 100 m below the surface were excluded as they were deemed unrealistic 

based on historical depths of failure. 

Case studies

SSIM 2023, Perth, Australia 625



 

The generation of a hybrid DFN that combines a high confidence deterministic fault model with a stochastic 

model allowed a range of possible scenarios to be explored quickly and efficiently. Adopting a probabilistic 

approach has enabled calibration of the model to a previous mining stage, thereby improving confidence in 

the results. A stronger focus on structure and or a composite mechanism is a better match to reality 

compared to traditional continuum approaches. The results provided confidence in the slope design and 

resulted in optimisation at the mine. 
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