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Abstract 

Traditional means of undertaking reconciliation and performance measurements on open pit mines can be 

quite time-consuming and also labour-intensive. Furthermore, when comparing the actual or as-built pit 

against the underlying open pit design, the measurement of performance can be subjective based upon the 

practitioner’s level of experience, nuances in the geometries being analysed and the time available to conduct 

the analysis. 

With the advent and advancement of the use of artificial intelligence (AI) applied to mining problems, the key 

issues of time, availability, repeatability and accuracy of open pit reconciliation are being greatly improved. 

Specific tools and key performance indicators for pit reconciliation have been incorporated into an AI-based 

software platform, including crest loss, toe flare, available catch capacity, bench face angle, and volume of 

overbreak or underbreak etc., for fast and accurate pit reconciliation. 

The measurement of key performance indicators such as these allow for the rapid and accurate assessment 

of drill and blast design performance. Reporting on compliance to design can quickly be fed back into the drill 

and blast process to optimise and improve outcomes. 

Furthermore, the identification of potential non-conformance leading to hazardous areas in the pit (i.e. 

insufficient spill berm width coupled with rockfall hazard) can be easily communicated and incorporated into 

monthly geotechnical hazard maps for communication to work crews. 

The process described is based upon the analysis of high-resolution photogrammetric models of the as-built 

pit environment. The AI-generated results are highly visual, can be displayed qualitatively and offer detailed 

quantitative reporting on conformance. 

In order to validate the accuracy and sufficiency of the AI tools, significant time has been spent conducting 

manual validation on identical datasets, with very promising outcomes. This paper describes the application 

of AI, and the independent evaluation and verification of the results are presented herein. As with any use of 

AI, independent human verification is advised. 
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1 Introduction 

Artificial intelligence (AI) can be described as the intelligence shown by computers as opposed to that which 

is shown by humans or animal intelligence. The word ‘intelligence’ indicates that there is an ability to reason, 

make generalisations or infer some kind of meaning from what is being sought or observed (Wikipedia 2023). 

The aim of AI could generally be described as one to replace human functions and processes with those 

conducted by machines or computers. It would seem that the intention has always been to develop an 

intelligence that can make decisions for us, and process very large sets of information and data, to essentially 

make human life easier. 
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The application of AI to problems in industry, particularly mining, is not new, but we are seeing broader 

application taking place and the speed at which it is being adopted appears to be quickening. The drivers for 

this could be linked to advances in computing power, a lack of human resourcing in the mining industry and 

the realisation that significant value can be gained by processing large bodies of data in very short periods of 

time: specifically, processes that we would traditionally perform as humans in our day-to-day roles on mine 

sites. 

We could be considered as generally time-poor as practitioners. Due to our busy and time-poor lifestyles, we 

often find that important tasks on a mine site become performed less frequently, and the opportunity to 

learn or improve our practices comes second place to production. 

This paper explores one such development of the application of AI-based analysis in the area of open pit 

reconciliation. The need for, and importance of, open pit reconciliation is explored, not just from a 

conformance-to-design perspective but for identification of deficiencies of the as-built physical environment, 

and how this impacts on safe operations within the open pit environment. 

The capture and development of 3D photogrammetric models routinely occurs in mining and these models 

are rich in information, which is an important step in understanding our performance in the open pit 

environment. A quality model is fundamental to the reconciliation of open pits, and factors affecting the 

quality of developing such a model are discussed within this paper. 

The fundamental process of AI and its development and application to resolving open pit reconciliation is 

described herein. There is long-recognised potential for AI to meaningfully contribute to the mining industry, 

and this paper aims to demonstrate one such application. 

Importantly, verification and validation of the AI process has been conducted and assessed against the 

intended AI functions of open pit reconciliation. The keys measures of success in this instance are defined as: 

its accuracy, i.e. human-made reconciliation reports compare accurately to the AI-based reconciliation; and, 

perhaps most importantly, that this is undertaken in a significantly more time-efficient manner. 

2 Open pit slope reconciliation 

The majority of mine sites globally and throughout Australia gather a substantial level of data but only a small 

portion is fully utilised, and is often limited to basic tasks including volumetric reconciliations and wall 

sign-offs (crest and toe checks).  

Converting raw data into useful insights has historically taken time and resources, with sites often not 

equipped to complete this on a regular basis. However, leveraging this data can enhance operational 

decisions. To complete this effectively there is a requirement on site to improve and streamline current 

workflows, ensuring the best use of limited resources while utilising the tools now available to the industry 

to complete tasks more effectively and to a higher level of accuracy. 

The ability to capture aerial survey data via unmanned aerial vehicles (UAV) and incorporate a high-resolution 

photogrammetric model or LiDAR scan in comparison to the underlying slope design file ensures a robust 

and accurate model is developed which overcomes previous issues around a lack of adequate and reliable 

data. The ability to capture this data remotely allows for the removal of mine site personnel from hazardous 

regions of the pit. 

As open pits are increasing in footprint dimensions and depth, ensuring compliance of the as-built pit to the 

engineered design is increasingly critical to the economics and safety of the operation (Dey et al. 2021). 

The direct measure of crest loss or batter conformance allows for calibration of the existing bench stability 

analysis, enabling the data to be used in future risk modelling and slope optimisation; thus increasing 

confidence in the final design. The ability of an operation to achieve design should be assigned a weighting 

in subsequent design analysis and considered when reviewing wall cutbacks, optimisation programs or the 

development of new open pits.  
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Identification of sectors of pit walls where the available catch capacity is less than adequate, and 

development of correct control measures, can assist with improved rockfall risk management and 

operational practices on site. This process then allows for the identification and rectification of the failure 

mechanism that compromised the wall performance. 

UAVs offer rapid data capture, and the correct use of AI can streamline workflows, allowing timely, 

data-driven decisions. This is vital for large pits with fast vertical growth. The ultimate goals are safety, 

compliance and value addition through reduced ore loss, hazard identification and ongoing optimisation. 

A systematic approach involving data collection, comparison with predictions and iterative design 

modifications ensures rational slope design. 

3 Data capture and processing 

The open pit as-built models that were used for pit reconciliations were derived from photogrammetric 

processing of aerial drone imagery. The models that can be produced from aerial surveys contain sufficient 

resolution for detailed visual and quantitative reporting of parameters such as crest loss, toe flare, overbreak 

and underbreak, and more, which would be difficult to accurately quantify using data obtained from other 

conventional survey methods. 

With drones now commonly used in many open pit mining operations around the world, obtaining highly 

detailed and spatially accurate 3D models of pit excavations for geometric pit reconciliation has become 

more achievable. The latest drone technology and data processing software has made the capture, 

processing and handling of high-resolution data more efficient, enabling more frequent analysis and 

reporting to be performed.  

3.1 Data capture methodology 

The 3D models used for the evaluations described in this paper were generated from drone imagery that was 

captured with the parameters specified in Table 1. 

Table 1 Aerial data capture parameters 

Parameter Description/methodology 

Drone type DJI Mavic 3 Enterprise real time kinematic (RTK) (small multirotor) 

Image geolocation The drones’ RTK capability was used for applying accurate geolocation to 

each image, enabling a model of high spatial accuracy to be generated 

without ground control points applied in the processing. Surveyed check 

points were, however, used to verify the accuracy of the resulting model 

Image orientations Oblique imagery was captured with the drone following the contours of the 

pit, maintaining a constant 50 m separation from the pit wall 

Ground sample 

distance 

Average 1.3 cm per pixel  

Image overlap Nom. 80% forward, and 80% side overlap 

Capturing nadir imagery of the pit will enable a 3D model of sufficient detail to be generated for accurate 

reconciliation reporting. This allows for simple flight planning using the default nadir mapping functionality 

that is inbuilt in most drone systems (such as the commonly used DJI Mavic 3 Enterprise illustrated in 

Figure 1). The capture of oblique imagery does, however, enable detail in the sub-vertical surfaces (batter 

faces) to be modelled. This is useful for visual inspection of those surfaces or for applying artificial intelligence 

to the mapping of structure in the rock mass (which is beyond the scope of this paper). Figure 2 illustrates 

the oblique image capture locations corresponding with the contours of a pit that was modelled. The pit in 
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this example has dimensions of approximately 1,200 m length, 700 m width and 200 m depth, and involved 

the capture of 4,153 images over one day. 

To enable accurate reconciliation of the pit models against the pit design, it is important that the model has 

high relative and absolute spatial accuracy. With the real time kinematic (RTK) capability that many drones 

being used on mine sites now have, this can be readily achieved with the use of no, or minimal, surveyed 

ground control points (GCPs). However, even with RTK drones, a small number of GCPs is recommended. 

For non-RTK drones, an increased number of GCPs will still generally enable adequate accuracy to be 

achieved, provided that the camera used is suitable for photogrammetric mapping. 

Although not used in the evaluations discussed in this paper, 3D models suitable for accurate reconciliation 

reporting with AI have also been generated by RocketDNA using: 

• Nadir imagery captured by drone at an average ground resolution approximately 5 cm per pixel. 

• LiDAR and imagery data captured with fixed-wing manned aircraft at an image resolution of 10 cm 

per pixel and LiDAR point density of 20 points per square metre. 

 

Figure 1 Capturing aerial imagery of an open pit with a DJI Mavic 3 Enterprise RTK drone for modelling 

and reconciliation in Strayos software 
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Figure 2 Oblique image capture locations (black dots) illustrating the capture of images parallel to the 

contours of the pit  

3.2 Data processing 

The models generated for the reconciliation reporting process were generated in Strayos software platform 

(Strayos Inc.).  

Strayos includes a photogrammetry engine that enables the individual drone images to be uploaded directly 

into the cloud-based software, which then commences the processing to generate the full-resolution 

orthomosaic image and digital surface model (DSM) for 2D viewing, and the rendered 3D model (for 3D 

viewing, as illustrated in Figure 3). If surveyed GCPs are available, these are applied after the initial image 

upload and prior to the photogrammetry process. 

Alternatively, the orthomosaic imagery and DSM can be generated in other photogrammetry software and 

then uploaded into Strayos for the reconciliation reporting. However, using Strayos to process the drone 

imagery and produce the model enables detail in the sub-vertical faces to be maintained in the case that 

oblique imagery has been captured. 

Bench design

SSIM 2023, Perth, Australia 909



 

 

Figure 3 Rendered 3D model of an open pit generated in Strayos software from drone imagery 

3.3 Automation of data capture and processing 

With autonomous drone systems (also commonly referred to as ‘drone-in-a-box’ systems) now becoming 

more readily available, the automation of aerial data capture and processing for pit reconciliations is feasible. 

Autonomous drone systems involve one or more drones located on site – each operating from a ‘dock’ – 

which can execute scheduled or on-demand flights, with oversight by a pilot in a remote operations centre. 

The captured data is then automatically uploaded to a cloud service once the drone completes the mission 

and returns to the dock. These systems will provide a cost-effective method of conducting more frequent 

capture of open pit as-built data, with the possibility of automated upload into software such as Strayos for 

generating the pit models required for reconciliation reporting. 

4 Artificial model development and training 

This section describes the prediction and filtering model developed for Highwall-AI. 

4.1 Source data 

The initial information used for detecting crest and toe lines consists of geolocated orthographic images and 

digital elevation model (DEM) files. A DEM provides the basic geometry required, while orthographic images 

help identify and remove trees and other objects that might interfere. 

In simpler terms, we look at the slope angle of the land to find crest and toe lines. When the slope angle is 

high it indicates benches. The edges of these benches are either crest or toe lines. 

However, sometimes the branches and crowns of trees on the DEM can create false benches. To address this, 

we employ a technique called semantic segmentation using a convolution neural network (CNN) with a UNet 

architecture. 

4.2 Data preparation 

The orthographic images were labelled in QGIS by manually marking them and then saving the results in 

corresponding GeoJSON files, as seen in Figure 4. 
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Figure 4 Orthographic images showing masking 

This approach has advantages over traditional image labelling because it allows us to easily match different 

raster and vector data. The orthographic image, DSM and GeoJSON are all geolocated data, making it simple 

to align them. 

During training, it is important to use data that corresponds to the same common ground sample distance 

(GSD). GSD is a control parameter that affects the accuracy of the model. The GSD value used during training 

should also be used in the inference pipeline to ensure consistent model performance. 

Before training the model, a Python script crops the labelled orthographic images, rasterises the GeoJSON 

and creates a cosine field of the DSM. These cropped images will be used for training the model. 

The cosine field represents the slope of the terrain at each pixel of the DEM. It helps the model distinguish 

between green benches, like those made of chromium oxide or nickel ore, and non-green trees. 

Bench design

SSIM 2023, Perth, Australia 911



 

The field of normals on the DEM is calculated as the normalised cross product of the derivatives in the X and 

Y directions. This field is used to determine the slope cosine. 

 ���⃗ = ‖
��

��
×

��

�

‖  (1) 

where ���⃗  is field normal on the DEM. 

The cosine field is defined as a dot product between field of normals and vector OZ [0, 0, 1] 

 � = ���⃗ ⊙ [0,0,1] (2) 

where C is the cosine. 

Training the model with a GSD value of 0.5 metres per pixel and a cropping size of 256 pixels (see Figure 5), 

was found to achieve the best accuracy. 

 

Figure 5 Cropped images to 256 pixels 

4.3 Model description 

4.3.1 Input/output data 

The input data for the neural network consists of a four-channel packet: RGB (colour channels) and the cosine 

field. The output is represented by four channels that correspond to the probability of predicting four 

different classes: 

• Background. 

• Bench. 

• Flat part of trees. 

• Sloped part of trees. 
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This class structure allows the model to differentiate between sloped benches and sloped parts of trees. 

We added the bench class to help the model learn the difference between benches and trees. As a result, 

the model can better detect the sloped edges of trees compared to benches, even if they are both green. 

4.4 Neural network architecture 

A neural network was implemented using the UNet architecture, which is based on the ‘efficientnet’ 

backbone. UNet is a well-known architecture used for semantic segmentation that was originally developed 

for biomedical image segmentation. The architecture includes connections between layers at the same 

depth, allowing the model to establish meaningful relationships between the input and output data. 

Efficientnet is a state-of-the-art backbone architecture that offers different complexity levels (B0..B7). 

Since our model predicts multiple classes for semantic segmentation, the output layer uses the ‘softmax’ 

activation function. 

Figure 6 shows CNN with UNet architecture implemented for this task. 

 

Figure 6 Diagram displaying CCN with UNet architecture 

4.5 Model training 

The following sections describe the process undertaken for training of the AI model. 

4.5.1 Data augmentation 

To increase the variety of training data we applied augmentation techniques to the source dataset. Each time 

a source patch was used in the training pipeline it underwent a series of random transformations, such as 

horizontal/vertical flip, rotation, scaling, shifting, brightness/contrast adjustment, colour distortion and 

adding Gaussian noise. These transformations help prevent overfitting and improve accuracy. 
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4.5.2 Measuring the model performance: optimiser, metrics, loss function 

We used the Adam optimiser with a learning rate of 5e-4. The metrics used to evaluate the model’s 

performance were intersection over union (IoU), F1 score and F2 score. The loss function used was the 

categorical focal loss, which is based on binary focal loss. Figure 7 displays loss and metrics history during 

training of the AI model. 

 

Figure 7 Loss and metrics history during training of the AI model 

4.6 Inference pipeline 

To ensure accurate predictions, the input image is divided into patches and predictions are made for each 

patch. However, predictions near the patch boundaries may have large errors. To address this, we used 

overlapping patches and merged them into one large image. 

After tree and object filtering is undertaken, a computer vision algorithm is employed to detect crest-toe 

lines by processing the image pixel by pixel in the DSM. 

The steps undertaken during the process are as follows: 

• Detecting the 3D-field of normals from the DSM. 

• Calculating the slope cosine from the normals. 

• Filtering the slope cosine field based on a threshold angle (Figure 8). 

• Removing small islands and holes from the filtered mask. 

• Expanding the mask boundaries to capture more flat top and bottom surfaces (see Figures 9 and 10). 

• Suppressing trees using a CNN with a UNet architecture. 

• Smoothing the boundaries (Figure 11). 

• Creating centrelines by skeletonising the resulting mask (Figure 12). 

• Connecting crest and toe lines for each skeleton centreline (Figure 12). 

• Integrating complex areas to obtain crest-toe pairs. 
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• Merging the raster mask and result edges (Figure 13). 

 

(a) (b) 

Figure 8 Filtering and masking of the slope cosine field based on a threshold angle. (a) Slope cosine field. 

1-vertical, 0-horizontal; (b) Mask where cosine less than threshold 

  

Figure 9 Slices through the model (pit geometry) to display growth of the boundary to capture more of 

the flat top and bottom boundaries of the model 
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(a) (b) 

Figure 10 Masking increased 25–55°, with effect on predicted identification of berm or flat areas in the 

model. (a) Filtered mask; (b) Mask raised up to 25 [deg] and down to 55° 

  

(a) (b) 

Figure 11 Smoothed boundaries within the raster mask, and subsequent generation of the centrelines 

creating a vectorised topography. (a) Finish state of the raster mask; (b) Centrelines graph with 

circles in lines ends 
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(a) (b) 

Figure 12 Display of integration following connection of crest and toe lines for each skeleton centreline 

and formation of crest and toe pairs. (a) Raster topological separation by graph. Not shared 

contour lines are crest or toe lines; (b) Merge of raster mask and result edges 

 

Figure 13 Final product displaying merging of the raster mask and the resulting edges (crest and toe lines) 

5 Traditional versus AI-based pit reconciliation 

In this chapter we delve into a comprehensive investigation that aims to uncover any disparities between 

manually selected crest and toe points and those identified by the AI software in the context of geotechnical 

analyses. The accurate determination of these critical points plays a pivotal role in open pit reconciliation, 

and is an important step in validation of the AI model. It also provides the opportunity to continue training 

and therefore refining the AI model for future iterations of the software development. 

The primary objective is to rigorously compare the accuracy levels achieved by AI software against the 

traditional manual selection process. We analyse the results obtained from both approaches, shedding light 
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on the trade-offs between precision and efficiency. By quantifying the discrepancies in accuracy and 

assessing the time required for data collection, we provide valuable insights into the level of effort involved 

in point identification and data representation for reconciliation. 

Furthermore, this chapter highlights the current limitations and challenges associated with utilising AI 

software for point selection in reconciliation. We explore factors such as dataset quality, algorithm 

robustness and the interpretability of AI-driven results. Understanding these limitations is crucial for 

assessing the reliability and applicability of AI technologies in real-world scenarios. 

One key aspect of our analysis focuses on the time taken to produce crest and toe points using the manual 

method versus AI-driven approaches. By conducting controlled experiments and meticulously recording the 

time spent on each process, we present a clear comparison that demonstrates the potential time-saving 

benefits of employing AI software in geotechnical data collection. 

5.1 Method of analysis 

Two trial areas were selected in hard rock open pit mines within an existing database of photogrammetrically 

modelled open pits. An area approximately 100 m in length and two benches in height was selected at each 

mine site for conducting reconciliation of crest and toe positions (see Figure 14). 

For each section of wall, the AI-based software platform Strayos was used to generate crest and toe lines. 

The process was then conducted manually. 

In order to generate crest and toe lines manually, the 3D digital model was sliced in increments of 1 m, and 

the crest and toe positions were digitised as points. After stepping through each 1 m-thick slice and digitising 

crest and toe points, a stringline connecting each point to form the crest and toe lines was manually digitised. 

Sectioning and digitising the model on 1 m sections and digitising the toe and crest lines was found to be very 

time-consuming. The process was re-run manually based on 5 m-spaced sections to speed up the process. 

It was later found through our analysis that this resulted in minimal reduction in accuracy of the reconciliation 

process. 

Once crest and toe picks were determined both through the AI process and manually, the resulting lines were 

compared. The method of comparison was by measurement of the horizontal and absolute distances from 

the actual toe or crest pick to the design (see Figure 15). 

Defining of the crest from the as-built physical model is a relatively straightforward process, however, the 

pick of the toe position can be subjective due to gradual flattening of the wall. It is generally accepted that 

the transition from toe position to catch berm is at the point when the slope becomes flatter than 20°. If the 

wall is steeper than this, then a falling rock will not be arrested. 
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Figure 14 AI-generated and manually generated crest and toe picks for two separate mines 

 

Figure 15 Defining crest loss, toe flare and the point at which the berm is flat enough and is considered to 

have catch capacity 
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5.2 Results and discussion of results 

For each of the selected areas within the pits, the AI-generated and manually derived crest and toe picks 

were compared graphically and then statistically. When comparing AI-generated and manually picked crests 

(Figure 16) and toes (Figure 17), it was found that, in general, AI-generated and manually picked crests align 

very closely across both Mine A and Mine B, and across multiple benches. However, this was not the case for 

the toe picks. It was found that generally a large disparity existed with the toe picks generated from AI 

compared to the manually generated pick. 

Furthermore, it was also found that AI-generated crest and toe lines are much smoother when compared to 

the manually generated crest and toe lines. The reason for the level of smoothing is currently being 

investigated further. Manually picked crests generally appear more jagged as the crest line is precisely 

followed, and local failure mechanisms such as wedge failures can be clearly identified by the rapid change 

in the gradient of the line. 

The difference between AI-generated and manually picked toe positions is significant, and can be traced back 

to the definition of the point at which the toe becomes flat enough to be considered as the catch berm and 

is no longer the batter. The AI appears to place the toe line at the interface between the sub-vertical batter 

and the point at which flaring becomes evident (or, the toe). When picked manually, the user measures the 

point at which the toe becomes flatter than 20°, at which point is it consider to be the catch berm. 

During the writing of this paper, the AI platform (Strayos) was undergoing further developments to make the 

toe selection a user-defined option. 

 

Figure 16 Comparison of an AI-generated versus manual pick of the crest for Mine A – 415 m RL 
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Figure 17 Comparison of an AI-generated versus manual pick of the toe for Mine A – 415 m RL 

When comparing the AI- and manually generated crest picks, the crest lost was analysed by looking at mean, 

standard deviation, minimum, maximum and confidence levels (percentile values) for comparison, as well as 

visual assessment of the actual crest against the designed crest position. It was found that AI-generated toe 

picks are generally very similar to the manually derived toe picks. It should also be noted that picking of the 

crest or toe can be a subjective process and may vary slightly from person to person. Therefore, utilising AI 

offers a consistent approach with human bias removed. However, bias may still exist in the way the AI model 

for picking crest and toe has been trained. 

When comparing manual and AI crest loss picks for three separate sets of data (Tables 2, 3 and 4), it was 

observed that, in general, the AI-picked crest position indicated greater crest loss had occurred than was 

observed with the manual pick. Interestingly, the minimum point of crest loss was always observed to be 

greater within the AI-generated data. The maximum point of crest loss was greater in two of the three cases 

of AI-generated data. 

Table 2 Summary statistics and percentile values comparing manually picked and AI-picked toe positions 

(crest loss) for Mine A 415 m RL 

Percentile Manual (m) AI (m) Difference (m) Difference (%) 

P25 1.3 1.7 0.4 30.1 

P50 1.7 1.9 0.3 11.8 

P75 2.1 2.1 0.0 0.0 

P95 2.5 2.6 0.1 4.0 

Summary statistics     

Mean 1.7 1.9 0.2 11.8 

Standard error 0.11 0.08 0.03  

Median 1.7 1.9 0.25 11.8 

Minimum 0.9 1.4 0.5 55.6 

Maximum 2.5 2.6 0.1 4.0 
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Table 3 Summary statistics and percentile values comparing manually picked and AI-picked toe positions 

(crest loss) for Mine A 390 m RL 

Percentile Manual (m) AI (m) Difference (m) Difference (%) 

P25 3.1 3.4 0.3 9.7 

P50 2.7 3.1 0.3 14.8 

P75 1.6 1.8 0.2 12.5 

P95 0.3 0.8 0.5 166.7 

     

Summary statistics     

Mean 2.4 2.5 0.1 4.2 

Standard error 0.25 0.23 -0.02  

Median 2.7 3.1 0.4 14.8 

Minimum 0.1 0.6 -0.5 -12.2 

Maximum 4.1 3.6 0.5 600 

Table 4 Summary statistics and percentile values comparing manually picked and AI-picked toe positions 

(crest loss) for Mine B 140 m RL 

Percentile Manual (m) AI (m) Difference (m) Difference (%) 

P25 3.8 4.1 0.3 6.4 

P50 3.5 3.8 0.3 7.8 

P75 3.2 3.7 0.5 13.1 

P95 2.8 3.6 0.8 22.4 

     

Summary statistics     

Mean 3.5 3.9 0.4 11.4 

Standard error 0.14 0.06 -0.08  

Median 3.5 3.8 0.3 8.6 

Minimum 2.6 3.6 0.1 2.5 

Maximum 4.0 4.1 1.0 38.5 

In terms of the effort required to undertake both types of analysis, the AI-based approach is superior. 

The AI-based approach can generate crest and toe lines in a matter of seconds, whereas a ~100 m section of 

a single berm can take between 30 and 40 minutes for slicing, digitising crest and toe positions every 5 m, 

digitising a stringline representing both the crest and toe locations, and then manually measuring the 

distance between the as-built and the design. 

AI offers the opportunity to analyse significant larger areas of open pits in a fraction of the time it takes to 

complete the same work manually. 
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6 Conclusion 

This paper sought to highlight the under-utilisation of data captured in mine sites and the potential for AI to 

enhance operational decision-making and workflow efficiency. While a small percentage of available data is 

currently used to its full capacity, leveraging data effectively can lead to improved mining practices, 

decision-making and, therefore, mining outcomes. However, to implement meaningful changes there is a 

need to streamline workflows, optimise resource utilisation and leverage the tools available in the industry. 

The use of UAVs for aerial survey data capture, coupled with advanced photogrammetric modelling or LiDAR 

scanning, offers a reliable and accurate approach to generate detailed and high-resolution models of open 

pit mines. This data can be used to validate as-built pit designs, ensuring compliance with engineering 

specifications and improving safety and operational efficiency. 

Open pit reconciliation, specifically the determination of crest and toe points, plays a critical role in ensuring 

compliance and assessing performance. By comparing manually selected points with those identified by AI 

software, disparities were observed, particularly in toe picks. AI-generated crest and toe lines demonstrated 

consistency across multiple benches and mines, but further investigation is needed to understand the 

reasons for the observed smoothing effect. 

The comparison between manual and AI approaches revealed that AI picks indicated higher crest loss on 

average, with the minimum point of crest loss consistently higher compared to manual picks. Additionally, 

AI-assisted workflows showed significant time savings, generating crest and toe lines in seconds compared 

to the time-consuming manual process. 

While the results highlight the potential of AI in open pit reconciliation, it is essential to address the subjective 

nature of toe picks and potential biases in the AI model. Further refinement and development of AI-assisted 

workflows are needed to ensure reliable and accurate results. 

The incorporation of UAVs, advanced data processing software and AI models allows for rapid and consistent 

data capture and analysis. This facilitates improved safety, compliance and efficiency in open pit mining 

operations. The ability to identify geotechnical hazards, assess rock mass and structural response, quantify 

changes in excavation practices and track long-term performance contributes to informed decision-making 

and optimised pit designs. 

In conclusion, AI-assisted workflows have the potential to revolutionise open pit mining by harnessing the 

power of data and automation. However, ongoing research and development are necessary to address 

limitations and improve the reliability and interpretability of AI models. By embracing these technologies, 

mines can unlock the true value of their data, leading to safer, more efficient and economically viable 

operations. Furthermore, collaboration between multi-disciplined teams is essential to harnessing the 

benefit of adopting technology into mining and reconciliation processes. 
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