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Abstract 

In the digital era, the mining industry benefits from powerful tools that can help to optimise underground 

backfilling operations and to increase overall safety. Indeed, with current progress in artificial intelligence (AI), 

machine learning (ML) creates state-of-the-art techniques in the mining sector that could significantly 

improve the productivity and efficiency of mining operations. The purpose of this study is to apply ML 

algorithms, including the gradient boosting regressor (GBR), the XGBoost regressor (XGBR), and the support 

vector regressor (SVR) to predict the uniaxial compressive strength (UCS) of cemented paste backfill (CPB). A 

total of 1,587 UCS data were used to train the ML algorithms, considering different variables such as the types 

of tailings, binder and their proportion, solid mass concentration, slump height, water quality, and curing 

time. The raw data were pre-processed before training the models, as well as their hyperparameters tuning 

was made by a random search method followed by 4-fold cross-validation. The prediction results show that 

the GBR algorithm is the most powerful one which has a coefficient of correlation (R) between predicted and 

experimental values equal to 0.99 and a root-mean-square error (RMSE) equal to 0.16. This prediction is 

validated through new-lab prepared CPB specimens. 

Keywords: artificial intelligence, machine learning, database, prediction models, uniaxial compressive 

strength, cemented paste backfill 

1 Introduction 

Public commitment and recent environmental legislation are becoming increasingly stringent and are 

constraining mining companies to follow the ‘towards sustainable mining’ standard, which is a globally 

recognised sustainability program in managing key environmental and social risks of their solid waste storage 

facilities.  

In the case of underground operations, the formulation of mine backfill using these solid wastes is the most 

widespread approach, not only for filling the underground excavations produced during ore extraction to 

ensure the ground stability, but also for reducing the huge quantities of mine waste to be stored on surface. 

Among the most used worldwide types of mine backfill is the cemented paste backfill (CPB) (e.g. Belem et 

al. 2003) which is made of tailings, a binding agent (e.g. general use Portland GU cement alone, or a blend of 

GU with ground granulated blast furnace slag, fly ash, etc.) and mixing water. CPB may also contain chemical 

admixtures such as superplasticisers (e.g. Ouattara 2017).  

For this purpose, knowledge of the mechanical properties of CPB is essential for the implementation of a 

backfilling system. In practice, uniaxial compressive strength (UCS) is the most used parameter to evaluate 

the mechanical performance of CPB (e.g. Belem et al. 2003). Various empirical models have been developed 

to predict the UCS of mine backfill (e.g. Mitchell & Wong 1982; Arioglu 1984; Swan 1985; Lamos & Clark 1989; 

Yu 1989), but they are still complex and ignore all the physicochemical properties of the backfill 
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ingredients (i.e. tailings, binder, and mixing water). Other researchers have correlated the UCS with the shear 

wave velocity using non-destructive tests (ultrasonic pulse velocity [UPV]) (Ercikdi et al. 2014; Yılmaz & Ercikdi 

2016), but this method is not robust and has not been well-developed.  

More recently, the prediction of the UCS using advanced methods considering the influential parameters 

(proportion of cement and tailings, solid content, and curing time) has been developed in some studies. Qi 

et al. (2018a) developed an artificial neural network (ANN) combined with a particle swarm optimization 

(PSO) algorithm to predict the uniaxial compressive strength of CPB. A total of 396 tests were performed to 

build the dataset which contains only the types of tailings, cement-to-tailings ratio, solid content, and curing 

time (3, 7 and 28 days) as input data for the ANN. The prediction coefficient of correlation obtained was 

0.979.  

Yu et al. (2021) also used ANN, a support vector machine (SVM) model, and a salp swarm algorithm (SSA) 

optimisation algorithm as prediction methods to predict the UCS of CPB reinforced with polypropylene fibres. 

The dataset used for model training contains 720 UCS tests, cement-to-tailings ratio, solids content, curing 

time, fibres content, and fibres length were used as input data. The best prediction model ANN combined 

with the optimisation algorithm: SSA-ELM gave a coefficient of determination (R2) compared to the test data 

of 0.94 and a root-mean-square error (RMSE) of 0.18.  

Lu et al. (2019) combined a machine learning (ML) algorithm gradient boosting regression (GBR) with a PSO 

optimisation algorithm to predict the UCS, of which they used 126 UCS tests from specimens prepared using 

two types of tailings and the input data that were selected are cement-to-tailings ratio (0.083 to 0.25), solids 

content (66% to 78%), curing time (3, 7, 14 and 28 days). The prediction score obtained using this algorithm 

was R = 0.9837.  

Qi et al. (2018b) used a slightly larger dataset of 1,077 UCS tests and 231 uniaxial tensile strength (UTS) tests 

to predict the properties of CPB, such as UCS, UTS, elastic modulus, and Young’s modulus. They used the 

genetic algorithm for hyperparameters optimisation and three ML algorithms for the prediction: (i) decision 

tree (DT), (ii) gradient boosting machine (GBM), and (iii) random forest (RF). The results show that the GBM 

algorithm performs best, giving a correlation coefficient R = 0.963. 

Mine backfill performance is sensitive to many factors such as the types and the proportion of binder, the 

mixing water amount and chemistry, the sulphides content, the physicochemical, and the mineralogical 

properties of the tailings. All the above-mentioned studies have not considered these factors in the database 

for model learning. Moreover, some mining conditions will require long-term UCS (from 90 to 360 days) data 

to satisfy the technical requirements of the operations. Long-term curing ages were not considered in any of 

the cited studies in this paper. The performance of learning algorithms depends strongly on the quantity of 

data provided (the more data used, the better their performances will be).  

Most of the research studies on the prediction of the UCS used small datasets (less than 1,000 UCS tests). 

However, chemical additives can improve the UCS, GU-Slag compound binder develops much better 

strengths than GU cement (Sahi 2016). Most of the research has used only one type of binder, which is 

Portland cement. This shows a lack of diversity in the input data; also, only one type of water has been used 

(tap water) for the mix recipes formulation. 

To remedy the limitations cited in the literature, the present study aims to use advanced ML algorithms for 

predicting the UCS of CPB based on an extensive dataset containing 1,587 UCS tests. The model predictions 

will be compared to the existing dataset and evaluated through laboratory tests to select the best-performing 

model. 

2 Methodology 

2.1 Materials characterisation 

In this study, the ingredients used for the formulation of the CPB were tailings samples from three hard rock 

mines located in Abitibi-Témiscamingue region in Québec, Canada (namely, T1 = LaRonde mine tailings, 
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T2 = Westwood mine tailings, and T3 = Casa Berardi mine tailings), 15 types of hydraulic binder (GU Portland 

cement, Slag-blended, type F Fly ash-blended, and type C Fly ash-blended), and different types of water 

quality (tap water, lake water, and different concentration of sulphated water that are used by the mines). 

The tailings used were first homogenised, then their relative density (Gs) was measured using a helium 

pycnometer AccuPyc II 1340 from Micromeritics. Their particle size distributions (PSD) were determined 

using a Mastersizer 3000 laser diffraction particle size analyser from Malvern Panalytical. The PSD curves for 

the three tailings samples from the three mines are presented in Figures 1, 2 and 3. The mineralogical analysis 

of these tailings was performed using X-ray diffraction. The physical characteristics and the mineralogical 

composition of the tailing’s samples are summarised in Table 1.  

 

Figure 1 Particle size distribution curve of the LaRonde mine tailings 

 

Figure 2 Particle size distribution curve of the Westwood mine tailings 
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Figure 3 Particle size distribution curve of the Casa Berardi mine tailings 

Table 1 Physical properties and mineralogical composition of the three tailings samples 

Tailings 

sample 

Physical properties Mineralogical composition (%) 

Gs D10 (μm) D90 (μm) P20 μm (%)  Quartz Pyrite Chlorite Muscovite 

T1 3.18 4.9 127.0 33  56.2 18.6 5.0 6.2 

T2 2.82 3.8 89.3 48  47.8 7.7 22.1 0.7 

T3 2.80 3.6 120.7 51  34.8 2.7 12.3 22.7 

2.2 Cemented paste backfill mixtures preparation 

As previously mentioned, the CPB was obtained by mixing the tailings, binding agent, and water using a 

Hobart electric mixer (model D 300-1) for 5 to 7 minutes to homogenise the final paste. The different mixtures 

obtained were poured into plastic moulds (76 mm in diameter and 152 mm height), then sealed with their 

lids and stored in a room with a relative humidity of 90% and a temperature of 23± 2°C.  

Using the three mine tailings samples and varying the type of binding agent and its proportion (binder ratio 

Bw = Mbinder/Mdry-tailings), the type of water (tap, lake, sulphated), the mass solid percentage (Cw = Msolids/Mbulk), 

and the curing time, a total of 1,587 specimens were prepared (Table 2). In Table 2, xGU means x% GU, ySlag 

means y% Slag, and FA-C means type C fly ash. 
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Table 2 Experimental program for the CPB mixtures preparation 

Tailings 
Mass solid 

percentage Cw (%) 

Types of 

binder 

Binder ratio 

Bw (%) 
Water quality 

Curing time 

(days) 

T1, T2, T3 64 to 88 

10GU/90Slag 

20GU/80Slag 

30GU/70Slag 

40GU/60Slag 

40GU/60FA-C 

50GU/50FA-C 

60GU/40FA-C 

57GU/43FA-C 

70GU/30FA-C 

100 GU 

1 to 9 

Tap water 

Lake water 

Sulphated water 

(2,500 ppm SO4
2) 

Sulphated water 

(5,000 ppm SO4
2-) 

1 to 213 

2.3 Backfill mixes slump measurement 

The fresh paste backfill slump height was determined using the standard Abrams cone (Figure 4), which is 

the most widely used due to the simplicity of its implementation. This test consists of filling the cone in three 

layers pounded 25 times by a metal rod, and then the cone is delicately lifted (about 4 seconds) in accordance 

with ASTM C143 (ASTM International 2020). The slump measured was between 6 and 9 in (152 and 229 mm) 

which corresponds to the typical slump of a paste fill (Landriault et al. 1997). 

 

Figure 4 Slump measurement using the standard Abrams cone method 

2.4 Uniaxial compression tests 

The uniaxial compression tests were performed using a stiff mechanical press MTS 10/GL with a maximum 

capacity of 50 kN and run at a constant displacement velocity of 1 mm/min (Figure 5) according to ASTM C39 

(ASTM International 2021). The tests were carried out in triplicate and a data acquisition system recorded 

the axial strain and the normal stress applied to the specimens during the test, which allows representing the 
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stress-strain curve and the maximum/peak value which corresponds to the UCS. Note that each UCS value at 

each curing time is obtained by averaging three values (triplicate). 

 

(a) (b) 

Figure 5 Uniaxial compression test: (a) Stiff mechanical press MTS 10/GL; (b) Broken sample after test 

2.5 Prediction methods using machine learning algorithms 

The supervised ML process that has been adopted consists of first acquiring the data, processing them 

(deletion, discretisation, normalisation, preparation of categorical data if they exist etc.) and then splitting 

the data into two sets. In general, 70% are used for training the models and 30% to testing and validating the 

models (Nelson & Illingworth 1991; Nguyen et al. 2021). Second, model learning and hyperparameter tuning 

should be applied. Once the models are properly created and trained, evaluation and validation will be 

required afterward to select the best-performing one (Mathivet 2021). 

In this paper, the data were collected from the results of 1,587 compression tests performed at the Unité de 

Recherche et de Service en Technologie Minérale Laboratory at the Université du Québec en 

Abitibi-Témiscamingue (UQAT), of which 17 features were selected as inputs for the models and the target 

was the UCS. The descriptive statistics of this data is presented in Table 3.  

To improve the model learning, the data were scaled using the Robust scaler method by subtracting each 

value from the median and then dividing by the interquartile range (75% value – 25% value). This method 

effectively minimises the effect of outliers compared to other normalisation methods. Regarding the 

modeling, three ML models were chosen considering the dataset size, the type of data, and the data quality 

(Jakobowicz, 2021) to predict the UCS, namely the GBR, XGBoost regressor (XGBR) and support vector 

regression (SVR) (Pham et al. 2018; Qi et al. 2018a; Yaseen et al. 2018; Lu et al. 2019; Sun et al. 2020). 
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Table 3 Descriptive statistics of the data 

Parameter Count Mean Std Min 25% 50% 75% Max 

Gs (–) 1,587 2.88 0.15 2.80 2.80 2.80 2.82 3.18 

D10 (μm) 1,587 3.84 0.40 3.60 3.60 3.60 3.80 4.60 

D90 (μm) 1,587 117.01 12.36 89.30 120.70 120.70 120.70 127.00 

P20μm (%) 1,587 46.06 6.83 33.00 48.00 50.00 40.00 50.00 

% Quartz 1,587 41.41 8.97 34.77 34.77 34.77 47.82 56.15 

% Pyrite 1,587 6.87 6.36 2.68 2.68 2.68 7.67 18.60 

% Chlorite 1,587 12.33 5.17 5.00 12.33 12.33 12.33 22.08 

% Muscovite 1,587 15.63 9.27 0.66 6.20 22.66 22.66 22.66 

Slump (inch) 1,587 7.37 0.54 6.25 7.00 7.00 8.00 9.00 

Solids 

concentration 

(%) 

1,587 71.52 2.63 63.90 70.00 72.50 73.23 87.80 

GU cement 

(%) 
1,587 39.82 23.87 10.00 20.00 30.00 60.00 100.00 

Fly Ash_C (%) 1,587 8.45 18.15 0.00 0.00 0.00 0.00 60.00 

Fly Ash_F (%) 1,587 9.20 19.41 0.00 0.00 0.00 0.00 70.00 

Slag (%) 1,587 42.53 39.00 0.00 0.00 70.00 80.00 90.00 

Binder ratio 

Bw (%) 
1,587 5.28 1.60 1.00 4.5 4.50 7.00 9.22 

Curing time 

(days) 
1,587 44 34 1.00 14.00 28.10 56.00 213 

UCS (kPa) 1,587 648.95 646.24 21.00 245.75 456.80 876.60 4,726.00 

3 Results and discussion 

3.1 Hyperparameters tuning of machine learning models 

To avoid over-fitting and to find the optimal hyperparameters of the models, a random search method has 

been used in this study including k-fold cross-validation (k-CV). During the model training, random 

hyperparameter combinations were selected and then evaluated using cross-validation which consists of 

randomly dividing the training set into k subsets of which k-1 sets are dedicated for training and the remaining 

set is for validation (Qi et al. 2018a; Lu et al. 2019). The process of cross-validation will be repeated k times, 

and in this study, k was fixed to be 4 with the number of iterations (n_iter) equal to 10 which gives a total of 

40 executions. Table 4 describes the optimal hyperparameters selected for the model learning. 

Table 4 Description of the optimal hyperparameters  

Model  Hyperparameters  

GBR learning_rate = 0.16, max_depth = 5, min_samples_split = 4, n_estimators = 613 

XGBR Subsample = 1, n_estimators = 800, max_depth = 12, learning_rate = 0.3, gamma = 0.1 

SVR C = 107, gamma = 10-5 
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3.2 Performance evaluation and comparison of machine learning models 

The performance evaluation of the models was done based on the linear coefficient of correlation (R), which 

determines the correlation between the predicted and the actual values. The closer the R-value is to 1, the 

more accurate the prediction will be. The RMSE measures the prediction error rate on a (N) dataset. These 

two metrics are defined as follows: 

 R �  ∑ ���∗	�
∗����	�
����
�∑ ���∗	�
∗�²��� �∑ ���	�
�²���

 (1) 

 RMSE �  ��
� ∑ �y� � y�∗�²����  (2) 

where: 

��∗  = predicted values. 

��   = actual values. 

��∗��� and ��
  = corresponding averages. 

The models are well-trained and their performance increases with the data quality. Figure 6 shows the linear 

correlation between the predicted UCS using the ML models on the test set and the actual values. Comparing 

the performance of the models, it can be concluded that the SVR model obtained the worst performance 

(lowest correlation coefficient R = 0.95). However, the GBR and XGBR models exhibit a better fitting (and 

highest correlation coefficient R > 0.95) and can be generalised to be used on new data that they have never 

encountered before. This can be explained by the fact that algorithms based on DT and the boosting method 

are usually better performing in the prediction of tabular data. Moreover, the GBR model has the highest 

correlation coefficient (R = 0.99) due to its optimisation algorithm which is based on gradient descent where 

the errors of previous trees are corrected by the next ones (Mathivet 2021). 

 

Figure 6 Comparison on the 1:1 line of the predictions obtained by the machine learning models and the 

actual values 

The comparison between the predicted UCS by the models on the test data and the actual values is presented 

in Figures 7, 8 and 9. Low RMSE values of 0.16 and 0.17 were obtained with the GBR and XGBR models, 

respectively, while the SVR model is still the least efficient (Table 5). 

To validate the evaluation of these models, three CPB mixtures were prepared in the laboratory that do not 

exist in the dataset with the aim of predicting their UCS values. The prediction results of these three mixtures 

using the three ML models are presented in Figure 10. As noted on the test dataset, the GBR and XGBR 

models are the best performers in prediction with a low RMSE error, while the SVR model has a large RMSE 

error. 
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Figure 7 Comparison of actual UCS value and predicted UCS value using the GBR model 

 

Figure 8 Comparison of actual UCS value and predicted UCS value using the XGBR model 

 

Figure 9 Comparison of real UCS value and predicted UCS value using the SVM model 

Table 5 Performance of machine learning models 

Parameter 
Model (algorithm) 

SVR XGBR GBR 

R 0.95 0.97 0.99 

RMSE 0.84 0.17 0.16 
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Figure 10 A comparison of the UCS prediction results using the three ML models 

4 Conclusion 

In this paper, three ML models were trained on a dataset including 1,587 uniaxial compression tests data 

taking into consideration the physicochemical properties of the tailings, the type and proportion of the 

binder, the solids mass concentration, the slump of the final paste, the mixing water quality, and the curing 

time. A pre-processing of data was done before training the models using the robust scaler method for data 

scaling. A cross-validation has been performed to determine the model hyperparameters and to avoid 

over-fitting and under-fitting.  

Evaluation and validation of the model’s performance were completed by preparing new CPB mix recipes in 

the laboratory to determine the corresponding UCS values and to compare them with those obtained using 

the ML models. 

The results of this study show that: 

• The interquartile range-based data normalisation method is effective in improving model learning 

and avoiding the effect of outliers. 

• Optimisation of the model hyperparameters was done using the random search method with a 

number of iterations (n_iter = 10) followed by a 4-fold cross-validation. 

• The best performance (described by the correlation coefficient R and RMSE error) was obtained by 

using the GBR model. 

• Laboratory-scale prediction validation shows that the GBR model can accurately predict the UCS of 

CPB. 
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