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Abstract 

With the continuous development of China's social economy and exploitation of coal resources, some mines 

have reached the end of their life cycle. The precise intelligent recognition of the types, boundaries, and scope 

of closed/abandoned mines is a fundamental issue for energy resources, low carbon development and 

ecological protection. The study constructed a method for real-time live automated identification of spatial 

characteristics of closed/abandoned mines to obtain high-precision and high-quality information. The 

research included:  

1. Integrating multi-source remote sensing data such as Google Images, GF-6, Sentinel-2 and artificial 

intelligence technology to establish four datasets: 

a. coal mine sites (open pit) 

b. coal mine sites (underground) 

c. coal-power sites 

d. coal chemical sites.  

The dataset covered 21 categories of samples. Configured with six cuboids for each sample type, 

6 × 10 × 21 samples were created, totalling 1,260 site samples. The optimal confidence interval ranges 

from 80% to 86%.  

2. Developing a closed/abandoned mine site classification quantitative model (CSCQM) and a 

closed/abandoned mine site range characteristic model (CSRCM). The average accuracy of the models 

is 0.837. 

3. Take the example of China's closed shaft mine Shaanxi Zhujiahe coal mine – a quantitative and precise 

identification of the surface resource types of closed mines was conducted. The office area is 

2,375.7 m2, residential area is 5,073.8 m2, production area occupies 5,696.2 m2, and auxiliary 

production area occupies 9,951.6 m2.  

4. Based on open-source 3D  geographic information system (GIS) technology, coupled with artificial 

intelligence recognition models and other cutting-edge technologies such as web databases, a 

comprehensive GIS database platform for closed mines has been developed using a B/S architecture. 

This platform encompasses system architecture design, scene design, and functional design.  

The study aims to provide methodological references and practical support for quantifying spatial resources 

of closed mines. 
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1 Introduction 

Mineral resources form an essential base for human existence, playing a pivotal role in the progress of society 

through their exploration and exploitation (Xi et al. 2020; Zou et al. 2021). Concurrently, the extraction of 

minerals has its downsides, including alterations to the geological structure, deterioration of the natural 

environment, and potential threats to the safety of nearby communities (Feng et al. 2021; Morris et al. 2005; 

Zhang & Xi 2020). In the context of dwindling resources and escalating mining expenses, steps are being taken 

towards mine decommissioning. Yet, hasty mine closures not only result in resource loss but also provoke 

new forms of environmental pollution and geological hazards (Rezki et al. 2021). Developed nations and 

regions prioritise this issue, undertaking comprehensive studies and innovative practices in the management, 

redevelopment, and regulation of inactive or abandoned mines (Bandopadhyay & Packee 2000; Getty 

& Morrison-Saunders 2020; Monosky & Keeling 2021).  

Statistical data revealed that by 2018, the worldwide tally of decommissioned mines had surpassed one 

million (Huo et al. 2019). These inactive mines are predominantly located in regions such as Europe, North 

America, Australia, South Africa, and East Asia (Yuan et al. 2018). In nations known for their established 

mining sectors and cutting-edge subterranean technologies, such as Canada, the United States of America, 

and Germany, innovative approaches to mine closure have been in progress starting from the mid-20th 

century (He et al. 2018). These initiatives have shown effectiveness in reducing the negative effects of mine 

shutdowns. The escalating count of decommissioned mines around the globe, along with an intensified focus 

on the concept of sustainable development, has spurred global bodies and academics to broaden their 

investigation and feasible work concerning the reclamation and repurposing of closed mines. This has led to 

the accumulation of an extensive array of case studies, theoretical models, and legal standards related to the 

redevelopment strategies for these sites (Chang & Zou 2014; Liu et al. 2018; Bayanmunkh 2022). 

Resource characterisation of closed/abandoned mines is the basis for transformation and utilisation. With 

the continuous development of artificial intelligence technology, the mainstream approach for precise 

identification of mining feature information currently involves the use of high spatial resolution imagery 

combined with deep learning methods. The representative algorithms in deep learning are neural networks, 

and Convolutional Neural Network (CNN) is widely used for remote sensing image target recognition and 

classification (Shi & Zhang 2021; Gu et al. 2023). Representative algorithms include Faster R-CNN (Faster 

Region-based Convolutional Neural Network), Mask R-CNN, You Only Look Once-v5 (YOLO), U-Net, 

Transformers for Object Detection (DETR), and others (Ren et al. 2017; He et al. 2017; Redmon et al. 2016; 

Ronneberger et al. 2015; Carion et al. 2020). However, the complexity of remote sensing image backgrounds 

and the diversity of scenes restrict the versatility and adaptability of these algorithms. The DETR model is 

capable of directly predicting the categories and bounding boxes of objects from input images without the 

need for intricate intermediate steps. Moreover, the DETR model utilises transformer architecture, affording 

it a global contextual understanding capability, thereby enabling more precise object recognition and 

localisation. Due to its ability to consider full context, the DETR model can effectively handle occluded and 

overlapping objects. The DETR model has advantages in the process of predicting complex scenes. 

In recent years, foundational models such as Generative Pre-trained Transformer-4 (GPT-4), Flamingo, and 

Segment Anything Model (SAM) have made significant advancements (Alayrac et al. 2022). SAM is a visual 

model trained through the annotation of 1.1 billion marks on 11 million images. SAM can segment any object 

in any image without requiring additional training. However, it necessitates the provision of points, bounding 

boxes, or masks as cues alongside input images and the recognition outcomes of SAM are independent of 

categories. These limitations make SAM unsuitable for fully automatic identification of features from remote 

sensing images. The study establishes a coal-based site target recognition frame using conventional deep 

learning algorithms. These identified coal site recognition boxes serve as input cues for SAM, ultimately 

yielding precise information about coal-related sites. 
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Optimal data was selected from multiple sources including Google Images, GF-6 imagery, GF-2 imagery, etc. 

to construct a dataset of closed/abandoned mine samples. Establishing a coal-based site classification 

quantitative model (CSCQM) and a coal-based site range characteristic model (CSRCM) that integrates 

multiple data sources with deep learning algorithms, and conducts accuracy validation of the models. The 

model was used to quantitatively and accurately analysed the types, distribution, and quantities of resources 

at the Zhujiahe closed mine in Shaanxi, China. A model assessing the suitability for transitioning closed mines 

has been constructed. Establishing a comprehensive  geographic information system GIS management 

system for closed mines to manage the spatial assets above-ground such as factories, machinery, equipment, 

and extensive land, as well as underground resources including remaining coal, water, and mine shaft spaces. 

2 Intelligent analysis of coal-related industrial sites in closed/abandoned 

mines 

2.1 Definition of mine closure/abandoned mine 

In China, ‘mine closure’ is commonly defined as the permanent cessation of operations of a mining enterprise 

attributed to the depletion of resources, intricate geological conditions, macroeconomic control measures, 

market fluctuations, and business circumstances (Hu et al. 2005). As well, a lot of scholars consider that the 

concepts of ‘mine closure’ ‘abandoned mine’ and ‘mine shutdown’ are synonymous. They defined them as:  

‘The destruction or occupation of the original landform resulting from mining activities, 

leading to the formation of economically valueless lands such as open pit mines, 

subsidence areas, spoil heaps, and tailings ponds’ (Lin et al. 2018). 

The concept of ‘mine closure’ is often described using various terms abroad, including mine closure, disused 

mine, abandoned mine, discarded mine and shutdown mine, etc. Among these, ‘mine closure’ and 

‘abandoned mine’ are the most commonly used interpretations. In foreign mining operations, particularly 

open pit mines, studies on mine closure primarily focus on environmental restoration and land reclamation 

issues. For instance, Subodh (2013) defines ‘mine closure’ as the process that occurs when the operational 

stage of a mine is ending or has ended, and final decommissioning and mine rehabilitation activities are being 

carried out. 

2.2 Data samples and datasets delineation 

2.2.1 Data sources 

The study focuses on the Zhujiahe closed mine in Shaanxi province, China. The primary data sources utilised 

include remote sensing data and point of interest (POI) data. The detailed sources are outlined in Table 1. 

Remote sensing data is utilised for coal site identification at the Zhujiahe closed mine, while POI data is 

employed for supplementary accuracy validation of coal site identification in closed/abandoned mines. The 

remotely sensed data are pre-processed in the order of image fusion, image cropping, image stitching, and 

image segmentation. The POI data was used for data cleansing to obtain the coordinates of the points of 

interest of the coal-related sites. 

Table 1 List of data sources 

Source Time Accuracy Resources 

Sentinel-2 2023 Spatial resolution: 10 m https://scihub.copernicus.eu/dhus/#/home 

GF-6 2020 Spatial resolution: 2 m https://www.chinageoss.cn/aircas/ 

Google Images 2022，2023 Spatial resolution: <0.8 m https://earth.google.com 

Point of 

interest data 
2023 – Map website 

Abandoned mines

Mine Closure 2024, Perth, Australia 975



2.2.2 Sample collection and type classification 

Based on the characteristics of production-living-ecological space, the background of the Zhujiahe closed 

mine and relevant literature, the sample data was categorised into four datasets: 

1. coal sites (open pit) 

2. coal sites (underground) 

3. coal-power sites 

4. coal chemical sites.  

These datasets encompass 21 types of samples. The dataset for coal sites (open pit) includes various 

components: 

• open-pit mining areas 

• coal storage yards 

•  dumping site 

•  coal gangue stacking sites 

•  production auxiliary facilities 

•  other solid waste disposal sites, such as waste rock piles, tailings ponds, tailings dams, etc.  

The dataset for coal sites (underground) includes several elements as well. This includes:  

• industrial squares 

• coal processing facilities such as: coal selection workshops, coal washing workshops, coal storage 

yards, coal conveyor belts 

• subsidence areas, and damaged sites, such as: collapse, landslides, mudslides, cracks, deformations 

and encroachments.  

The dataset for coal-power sites consists of:  

• management areas 

• waste disposal sites 

•  production equipment 

• fly ash 

• chimneys.  

The dataset for coal chemical sites includes: 

• comprises coal chemical industry surface production management areas 

•  condensation towers 

•  surface equipment for coal chemical industry sites 

•  disposal sites for coal chemical industry waste, such as desulphurisation gypsum and coal chemical 

industry slag. 

The 21 sample types are configured with 6 × 10 samples per sample type, resulting in a total of 1,260 site 

samples. The detailed information of the dataset is provided in Table 2. Selecting data with high image quality 

and clear object boundaries is crucial for modelling and validation purposes. 

Application of artificial intelligence recognition model methods in the analysis
characteristics of closed/abandoned mine resources

J Dong et al.

976 Mine Closure 2024, Perth, Australia



Table 2 Samples and datasets 

Source Dataset Samples type Information 
Samples 

/6 × 10 
Samples type Information 

Samples 

/6 × 10 

Google 

Images, 

GF-6, 

Sentinel-2 

Coal sites  

(open pit) 

Open pit 

mining areas 

Uniformly toned black or 

light black with large 

plaques and well defined 

borders  

Coal storage 

yards 

Black or light black 

in colour, regular in 

shape and thicker in 

texture  

Dumping site 

Subtrapezoidal or 

regular subcircular 

patches that are 

concave inwards  

Coal gangue 

stacking sites 

Light grey in colour 

with high brightness 

and distinctive 

patchy marks  

Production 

auxiliary 

facilities 

Located around the 

open quarry, reddish-

blue in colour, regular in 

shape  

Other solid 

waste 

disposal sites 

Generally 

characterised by a 

light-toned patchy, 

orthogonal 

topography  

Coal sites 

(underground) 

Industrial 

squares 

A site for a series of 

sorting and transport of 

minerals extracted, 

accompanied by a mine 

building  

Coal 

processing 

facilities 

Generally located in 

areas with good 

transport links and 

characterised by 

industrial buildings  

Coal storage 

yards 

Black or light black in 

colour, regular in shape 

and thicker in texture 
 

Coal 

conveyor 

belts 

Long, regular shape 

 

Subsidence 

areas 

Ground collapse craters 

are round or oval in 

shape, with rough 

texture, varying shades 

of colour, unevenly 

distributed vegetation 

 Damaged 

sites 

The surfaces of the 

landslides are 

uneven and rough, 

often with large 

boulders jutting out 

from underneath 

 

  

Coal-power 

sites 

Management 

areas 

Including coal 

powerplant offices and 

living quarters, such as 

office buildings, 

hospitals, staff 

dormitories, etc. 
 

waste 

disposal sites 

Located in the coal 

powerhouse, rough 

textured and 

irregular in shape  

Production 

equipment 

Reddish-blue in colour, 

regular in shape, mostly 

square or rectangular, 

concentrated, with 

neatly distributed 

equipment 
 

Fly ash 

Appears grey or 

grey-black, piled up 

in hill-like shapes. 

mauve, blue in TM 

images, uneven in 

tone 
 

Chimneys 

Built near the coal 

trestle bridge, the 

building has a red and 

white circular strip  

   

Coal chemical 

sites 

Coal chemical 

industry 

surface 

production 

management 

areas 

Including coal chemical 

industry office and living 

quarters, such as office 

buildings, hospitals, staff 

dormitories, etc.  

Condensation 

towers 

Black circular area 

with high height and 

distinctive shadows, 

the tower is made 

of concrete and has 

distinctive areas of 

high brightness 

 

Surface 

equipment 

for coal 

chemical 

industry sites 

Black and bright blue in 

colour, with a 

concentrated 

distribution of industrial 

facilities, regular shape 

and distinct borders 
 

Disposal sites 

for coal 

chemical 

industry 

waste 

Greyish-white in 

colour with smooth 

texture and distinct 

accumulations  
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2.3 Site feature identification modelling 

The process of model establishment is divided into four steps (Figure 1):  

1. data screening 

2. establishment of sample dataset 

3. model training and accuracy verification 

4. establishment of optimal model.  

First, the optimal data sources were selected by screening from multiple sources such as Google Images, GF-6 

imagery, Sentinel-2 imagery, and others. Second, samples of coal-based sites from the Zhujiagou closed mine 

were collected to construct four datasets: coal mining sites (open pit), coal mining sites (underground), coal-

power sites, and coal chemical sites; covering 21 types of samples. Third, the samples from the dataset were 

used as training data, input into the DETR to obtain the optimal quantified model for coal-based site types; 

which is then subjected to accuracy verification. Subsequently, the four datasets (coal mining sites [open pit], 

coal mining sites [underground], coal-fired powerplant sites, and coal chemical industry sites) were 

individually input into the DETR model for training. Fourthly, the output of the DETR model was input into 

SAM to obtain the coal-based site extent characterisation model.  

The model application process was divided into data acquisition and pre-processing, site type quantification 

and site extent identification (Figure 2). Firstly, the obtained raw images were pre-processed, including fusion, 

cropping, splicing and chunking of the images. Secondly, the target frame information of the coal base site 

was obtained by using the quantitative model of the coal base site type and, again, the obtained target frame 

was inputted into the model of the range features of the coal base site, to obtain the range information of 

the coal base site. The model implements an application process for accurately identifying coal sites (open 

pit), coal sites (well construction), coal-power sites, and coal chemical sites using 21 site samples as a basis 

for identifying coal-based site boundaries, and using 21 site samples as a basis for determination. 

 

Figure 1 Process diagram for establishing coal-based site classification quantitative model and coal-based 

site range characteristic model 
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Figure 2 Application flow chart of coal-based site classification quantitative model and coal-based site 

range characteristic model 

Figure 3a depicts the schematic diagram of SAM, which includes an image encoder, prompt encoder, and 

mask decoder. The original SAM framework generates corresponding object masks based on the provided 

input prompts (points, boxes, masks). However, this manual intervention is not suitable for large-scale 

remote sensing object extraction. Therefore, the study replaces the manual input prompts required in SAM 

with object identification boxes established by the DETR model. This modification enables SAM to 

automatically extract objects from remote sensing images. Figure 3b illustrates the improved structure of 

SAM. Figure 3c shows the process of using the enhanced SAM for identifying coal sites (open pit).  

 

Figure 3 Segment anything model architecture and model improvement 

To evaluate the accuracy of the model, the following metrics were used. Precision (P) refers to the proportion 

of actual positives among all samples predicted as positive by the model. Recall (R) refers to the proportion 

of samples correctly predicted as positive by the model among all actual positive samples. The calculation 

formulas are as follows (Equations 1 and 2): 

 
P

P P

T
P

T F
=

+  (1) 

 
P

P n

T
R

T F
=

+  (2) 
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where: 

TP = the number of samples that are actually positive and predicted as positive. 

FP = the number of samples that are actually negative but predicted as positive. 

Fn = the number of samples that are actually positive but predicted as negative. 

Additionally, TP + FP denotes the total number of samples predicted as positive, and TP + Fn denotes the total 

number of actual positive samples. 

P(r) is the curve representing the relationship between R and P. Average precision (PA) is the mean precision 

(Equation 3). 

 

1

0
( )dAP p r r= 

 (3) 

The degree of overlap between the classification results and the labels was assessed using the mean mIoU of 

the intersection over union (IoU). The calculation formulas in Equation 4: 

 

P

P P n

=
IoU

T

T F F
m

+ +
 (4) 

In this study, PA is used to evaluate the accuracy of the coal-based site type quantification model, while mIoU 

is used to evaluate the accuracy of the coal-based site range feature model. 

2.4 Accuracy of coal-related industry site type identification results 

First, an analysis of the recognition accuracy of the DETR model and the SAM model on the validation dataset. 

The CSCQM and CSRCM both had good accuracy. The PA for all 21 sample types in the four dataset categories 

of coal sites (open pit), coal sites (underground), coal-power sites, and coal chemical sites were all above 0.8. 

The PA for the coal sites (open pit) dataset was 0.832, with mIoU of 0.823. For the coal sites (underground) 

dataset, the PA was 0.830, with mIoU of 0.836. The coal-power sites dataset had a PA of 0.824, with mIoU of 

0.842. Lastly, for the coal chemical sites dataset, the PA was 0.858, with mIoU of 0.849. 

Second, the overall average precision for the CSCQM was 0.836, and for the CSRCM was 0.838. The DETR 

model is a transformer-based object detection model, and its decoder does not use autoregression. This 

makes the prediction process of the DETR model more concise and efficient. As a result, the DETR model 

demonstrated excellent recognition performance for complex mining scenes in the context of 

closure/abandoned mine site recognition. The goal of SAM was to establish a foundational model for image 

segmentation. Due to its outstanding generalisation capability, the SAM model has achieved good results in 

practical applications. 

Finally, the quantitative model of coal-based site types and the coal-based site extent feature model, 

established using sample from closed/abandoned mines. These models were practically applied to identify 

feature information for various coal sites, including coal sites (open pit), coal sites (underground), coal-power 

sites, and coal chemical sites at Shaanxi Zhujiahe closed mine. The accuracy of these models was verified 

using POI data. The model accuracy reached 86.7%, with the lowest identification accuracy of 80.1%. 

The average accuracy was 83.6%. The accuracy of the model on the validation dataset is shown in Table 3. 
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Table 3 List of data sources 

Dataset Samples 
DETR 

/PA 

SAM 

/mIoU 
Dataset Samples 

DETR 

/PA 

SAM 

/mIoU 

Coal sites 

(open pit) 

Open pit 

mining areas 
0.821 0.814 

Coal sites 

(underground) 

Industrial squares 
0.843 0.856 

Coal gangue 

stacking sites 
0.812 0.831 

Coal conveyor 

belts 

0.867 0.843 

Dumping site 0.856 0.824 
Coal storage 

yards 

0.810 0.824 

Coal storage 

yards 
0.845 0.833 

Coal processing 

facilities 

0.842 0.862 

Production 

auxiliary 

facilities 

0.856 0.831 Subsidence areas 

0.814 0.826 

Other solid 

waste disposal 

sites 

0.801 0.804 Damaged sites 

0.803 0.806 

Total average 0.832 0.823 Total average 0.830 0.836 

Coal-power 

sites 

Management 

areas 
0.814 0.856 

Coal chemical 

sites 

Coal chemical 

industry surface 

production 

management 

areas 

0.854 0.835 

Fly ash 0.801 0.814 

Surface 

equipment for 

coal chemical 

industry sites 

0.863 0.864 

Production 

equipment 
0.821 0.836 

Condensation 

towers 
0.859 0.865 

Waste 

disposal sites 
0.823 0.845 

Disposal sites for 

coal chemical 

industry waste 

0.854 0.832 

Chimneys 0.863 0.859    

Total average 0.824 0.842 Total average 0.858 0.849 

3 Type identification and spatial characteristics of closed mine resources 

in Shaanxi, China 

3.1 Types and characteristics of closed mine resources 

The resources in closed mine are generally divided into above-ground resources and underground resources. 

Based on the industrial characteristics of the mining area, the above-ground resources in the mining area 

include surface water resources, land resources, industrial squares, and residential area buildings. The land 

resources mainly include coal sites (open pit), coal sites (underground), coal-power sites, and coal chemical 
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sites. There are many types of underground resources in closed mines, including space resources, underground 

equipment, and residual coal resources (Table 4). 

Table 4 Type of resource above/under mine  

 Type Characteristics 

Above-ground 

resource 

Surface water Ponds, rivers, lakes, reservoirs and other water bodies around the 

mining area 

Land resources The abandoned land, subsidence caused by mining (waste disposal 

sites, waste rock piles, tailings, etc.), and the farmland surrounding 

the mining area 

Industrial 

squares 

Buildings (office buildings, coal preparation plants, wellhead 

buildings, dispatching buildings, power and auxiliary facilities, etc.), 

and ground linear facilities (highways, railways, power, 

communication lines, etc.) 

Residential area 

buildings 

Canteens, bathhouses, boiler rooms, clubs, mine hospitals, staff 

dormitories, etc. 

Underground 

resource 

Space resources Shafts, chambers, roadways, and mining areas 

Residual coal 

resources 

Protective coal pillars in alleys, shafts, workings, faults, field 

boundaries, etc. 

Underground 

equipment 

Extraction equipment, transportation equipment, drainage 

equipment, ventilation equipment 

Underground 

water 

Aquifer water, water in wellbore silos, water in void areas, water in 

roadways 

Space resources Shafts, chambers, roadways, and mining areas 

3.2 Estimation of building space of industrial square 

To determine the available space of the industrial square's buildings, one can utilise Equations 5 and 6 for 

calculation (Li et al. 2023). 

 
1

( 1,2,3,..., )
n

buil buil buili
S L D i n

=
= × =  (5) 

 
1

( 1,2,3,..., )
n

buil buil buil buili
V L D H i n

=
= × × =  (6) 

where: 

����� = the floor area of the building, m2. 

����� = the length of the building, m. 

����� = the width of the building, m. 

����� = the height of the building, m. 

	���� = the available space of the building, m3. 
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Taking the closed mine of Zhujiahe as an example, the buildings in the mining area were measured by actual 

measurement and statistics. The floor area and space volume of the buildings were calculated according to 

Equations 1 and 2, respectively. Among them, the building of office area occupies 238,000 m2 and the space 

volume is 2,200,000 m3; the building of living area occupies 507,000 m2 and the space volume is 

3,400,000 m3; the building of production area occupies 570,000 m2 and the space volume is 3,800,000 m3; 

the building of auxiliary production area occupies 995,000 m2 and the space volume is 1,000,000 m3. 

The building space volume of the whole industrial square reaches 10,400,000 m3 (Table 5). 

Table 5 General situation of above-ground space resources in a closed mine in Shaanxi, China 

Types of above-ground space resources Floor area/m2 Space volume/m3 

Office buildings (administrative office building, 

garage, office laboratory, etc.) 
238,000 2,200,000 

Living area building (dormitory buildings, staff 

canteens, gym, etc.) 
507,000 × 103 3,400,000 

Production area buildings (main transformation 

room, machine repair plant, warehouse, etc.) 
570,000 3,800,000 

Auxiliary production area buildings (circular coal 

storage yard, water treatment sedimentation tank, 

sewage treatment room, etc.) 

995,000 1,000,000 

Total amount 2,310,000 × 104 10,400,000 

3.3 Feasibility analysis for repurposing closed/abandoned mining sites 

3.3.1 Mine transformation constraints 

The various modes for developing and utilising closed or abandoned mines are contingent upon meeting 

distinct resource requirements (Peila & Pelizza 1995). These requirements fall into four main categories:  

1. natural conditions 

2. mine resource conditions 

3. economic feasibility 

4.  external factors.  

Mine resource conditions encompass aspects such as the mining methods employed, available resources and 

facilities, the type of mine, its potential for transformation, and the mine’s size. Natural conditions refer to 

factors like surface subsidence, soil erosion, the state of surrounding rocks, pollution levels, and mining 

depth. External factors take into account the mine’s location, public support, market and technical demands, 

as well as the completeness of relevant policies. Lastly, economic feasibility involves analysing the industrial 

structure linked to the mine, its economic contribution, output value, employment impact, and the regional 

economic growth rate (Li et al. 2023), shown in Table 6. 

Abandoned mines

Mine Closure 2024, Perth, Australia 983



Table 6 General situation of above-ground space resources in a closed mine 

Target layer Criterion layer Index layer 

Factors constraining the 

direction of mine 

transformation 

Mine resource 

Method of mining 

Resources and equipment 

Mine type 

Transformation potential 

Mine size 

Natural factors 

Surface subsidence 

Surrounding rock conditions 

Soil erosion 

Pollution conditions 

Mining depth 

External factors 

Location condition 

Technical demand 

Policy completeness 

Public support 

Market demand 

Economic 

sustainability 

Industrial structure 

Employees 

Mining output value 

Economic share 

Economic growth rate 

3.3.2 Model for evaluating the suitability of mine closures for transformation 

According to different mining methods, the actual situation of the mine to select the transformation 

constraint factors, is chosen using the weight determination method and weighting, by calculating the 

transformation of the degree of suitability of the integrated constraint factor value (Equation 7): 

 
a

1 1

r

a ab aba b
T W Nω

= =
=   (7) 

where: 


 = the value of comprehensive constraint factor. 

�� = the weight of the first constraint factor. 

�� = the weight of the �th sub-constraint factor of the first constraint factor. 

��� = the value of the �th sub-constraint factor of the first constraint factor. 

� = the total number of constraints. 

� = is the number of sub-constraints included in the �th constraint factor. 
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3.3.3 Appropriateness of mine closure for transformation 

Based on the degree of suitability for transformation, a preliminary determination was made as to whether 

a closed mine could be transformed and the feasible modes of transformation. Level I indicates a particularly 

difficult transition path, level II indicates a difficult transition path, level III indicates a more difficult transition 

path, level IV indicates a more suitable transition path, and level V indicates a suitable transition path 

(Table 7). 

Table 7 Suitability of mine closures for transformation 

Level I Level II Level III Level IV Level V 

0 < T ≤ 20 20 < T ≤ 40 40 < T ≤ 60 60 < T ≤ 80 80 < T ≤ 100 

Particularly difficult Difficult More difficult More suitable Suitable 

3.3.4 Proposal of development and utilisation modes of the closed mine 

The mine has a beautiful environment, a superior geographical location, complete infrastructure and 

supporting facilities, and many mature scenic spots around it. The transformation and utilisation of the mine 

is in line with the requirements of mining tourism development. Taking mining tourism as the new economic 

growth direction of the mining area is of great significance to the economic diversification and sustainable 

development of mining towns. According to the preliminary evaluation of the suitability of the mine 

transformation, three transformation paths are put forward. 

1. Transformation into mine park or resort mode (mode 1). The internal facilities of the mining area 

are complete, and there are scenic spots in the surrounding area, with superior geographical 

position and convenient transportation. This transformation path cannot only reflect the history of 

mining development, but also protect industrial relics.  

2. Transformation into mine park or mine museum (mode 2). The mining area has rich industrial relics 

and cultural history, and the equipment in the mining area is well preserved, which can transform 

the mining area into a mode integrating mine park and mine museum, with research value and 

educational function. 

3. Transformation into mine museum or underground material reserve (mode 3). The underground 

space of the mining area is large. Using the special nature of the mine, the underground space of 

the mine can be built into an underground greenhouse to store and preserve vegetables and fruits, 

breed special animals and plants, or store special substances. It can also be used for underground 

reservoir construction and mine groundwater storage. At the same time, the mine museum will be 

developed to organically integrate the above-ground and underground spaces to effectively 

promote the transformation of mining areas. 

4 Construction of a  geographic information system comprehensive 

database platform for the closed mine 

4.1 System architecture and module design 

4.1.1 System architecture design 

The main framework of the integrated GIS management system for closing coal mines adopts the B/S 

architecture pattern. The basic geographic information data, image data, terrain data, and model data of the 

mines are stored in the data server. Clients can browse scenes and operate the system’s functions through a 

browser on the web. The server of the system accesses various data in real-time through a C/S mode. The 

system architecture design is shown in Figure 4. 
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Figure 4 System architecture design 

4.1.2 System scene design 

The mine area’s real-life 3D scene consists of two parts: the industrial square’s real-life 3D scene and the 

underground tunnel 3D model. The industrial square’s real-life 3D data is collected using unmanned aerial 

vehicles for low-altitude oblique photogrammetry. The underground tunnel 3D model is built using 3ds Max 

modelling software. By performing geographic registration, the integration of the mine area’s real-life 3D 

scene is achieved. 

4.1.3 System functionality design 

The main functionalities of the integrated GIS management system for closing coal mines mainly include 3D 

scene operations, above-ground and underground spatial resource management, closed mine-related 

information management, and tool management. The system functional modules are shown in Figure 5. 

 

Figure 5 Schematic diagram of system function design 
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4.2 System practice case design 

The system adopts a GIS secondary development approach, utilising ArcSDE as the spatial data engine and 

GeoServer and Cesium ion for publishing map data. The B/S part of the system is developed based on the 

open-source mapping engine, Cesium, to implement system functionality. Take Zhujiahe coal mine as an 

example. 

4.2.1 3D Scene manipulation 

This system utilises the Cesium API to load and navigate 3D scenes by accessing the mining area’s real-time 

3D data published through a Tomcat server. It also implements functions such as rotating, scaling, and other 

scene manipulations. In addition, the system displays mining area terrain and geographic location 

information using the terrain and image data provided by Cesium ion, combined with other image data from 

sources like Tianditu Map, and allows for switching and management of multiple image and terrain layers 

(Figure 6). 

 

Figure 6 3D image of the mine site 

4.2.2 Above/underground space resource management 

Management of surface space resources primarily includes buildings, machinery and equipment, and land. 

The system enables individualised and layered queries for buildings. Individualised queries provide 

information such as the names, floors, and area of each building, while layered queries provide detailed 

information about each floor, including room numbers and names. The system also manages attribute 

information for machinery and equipment, allowing users to query various parameters of coal storage, coal 

washing, and coal transportation equipment. Additionally, the system facilitates querying and management 

of surrounding land resources in the mining area, categorised by land use types such as green space, arable 

land, and industrial land. Users can access information regarding land area, cultivation, and irrigation within 

the system. Furthermore, the system manages transportation information for the mining area and its 

surroundings, including railways and highways, based on a vector map provided by Tianditu Map. As for 

underground space resources, which mainly include tunnels and galleries, the system allows for the query 

and management of length and area information after establishing a georeferenced 3D model for the 

underground spaces. 

4.2.3 Management of coal mining-related information 

Management of coal mining-related information primarily includes the construction status, closure overview, 

production overview, square overview, resource overview, as well as mining and closure reports. This system 

presents the entire process of coal mine construction through web pages, showcasing the construction and 

closure overviews from the beginning of construction to the closure of the mine to users. For the production 

overview of coal mines, the system uses the Echarts.js plugin to display historical data about the production 

volume, coal seams, and water influx in a chart format on the client side. The square overview includes a plan 

view of the square, as well as the attribute information such as the name, length, width, and area of all 
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buildings in the square. The resource overview mainly covers basic information about remaining coal 

reserves, land resources, and underground space resources; represented in statistical chart styles. Mining 

and closure reports are provided in PDF format for online browsing, downloading, and printing. 

4.2.4 Tool management 

Tool management includes the management of measuring tools and drawing tools. The measuring tools 

enable distance measurement, height measurement, and area measurement. Distance measurement 

includes both straight-line distance measurement and ground distance measurement. Height measurement 

includes vertical height measurement and triangle height measurement. The drawing tools include the 

drawing of point, line, and polygon features, as well as the drawing of geometric shapes such as rectangles 

and circles. 

5 Conclusion 

The study selected multi-source data, including Google Earth images, GF-6 images, and Sentinel-2 images, to 

determine the optimal data combination for identifying closed/abandoned mines. Specifically, Google Earth 

images were combined with GF-6 images to enhance the identification process. Based on existing research 

and practical needs, four datasets were constructed: coal sites (open pit), coal sites (underground), 

coal-power sites, and coal chemical sites. These datasets encompass 21 sample types. The research indicated 

that employing a method of setting up 6 ×10 × 21 samples for each type, totalling 1,260 site samples, can 

meet the accuracy requirements for identifying closed/abandoned coal-related mining sites. Analysis 

revealed the optimal sample quantity within the confidence interval for achieving the highest identification 

efficiency with an accuracy range of 80% to 86%. Training a multi-source coal-based site feature recognition 

model was achieved by utilising samples from four distinct datasets. This led to the establishment of the 

CSCQM and a CSRCM, yielding model accuracies of 83.50% and 83.70%, respectively. The innovative and 

efficient approach of overlaying Google Earth imagery with site intelligent recognition models for extracting 

coal-related site features, represents a notable advancement in this field.  

The CSCQM and CSRCM were employed to quantitatively analyse the precise background data of the 

Zhujiagou closed mine. Based on constraint factors, transition suitability grades, and resource conditions, a 

model for evaluating the suitability of transition for closed mines was constructed. This model provides the 

optimal transition pathway for the Zhujiagou. Leveraging open-source 3D GIS technology in conjunction with 

artificial intelligence recognition models and advanced technologies such as web databases, a comprehensive 

GIS management system for closed mines was developed. This system, built on a B/S architecture, 

encompasses system architecture design, scenario design, and functional design components. 

In the context of artificial intelligence recognition for coal-related industrial sites, the selection of sample 

datasets holds paramount significance. In future research endeavours, the establishment of a sufficiently 

large-scale and high-quality database pertaining to coal-related industrial sites emerges as a crucial avenue 

for enhancing the accuracy of boundary delineation and type identification models within this domain. Future 

research endeavours could utilise the abandoned open pit coal mine, Xinqiu, (located in Fuxin, Liaoning 

province, China) as a case study. This could involve intelligently identifying the boundary scope of abandoned 

mine landscapes, leveraging the advantages of artificial intelligence-based target object identification 

techniques in diverse and large-scale scenarios. Furthermore, it could facilitate the effective and precise 

identification of closed mines, thereby furnishing technical methodologies and practical examples for the 

governance and ecological restoration of closed mines. 
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