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Abstract 

As the global mining industry seeks to meet the ever-increasing demand for metals, mineral deposits are 

trending deeper, larger, and lower grade. Engineers play a crucial role in ensuring the extraction process is 

efficient. A key aspect of decision-making involves using subjectively logged geotechnical datasets, commonly 

collected by geologists, geotechnical engineers, and technicians. However, these datasets are often excluded 

from critical mining models due to a lack of quality, auditability, consistency and completeness. 

Recent advances in computer vision, particularly deep learning, have provided algorithms capable of 

efficiently identifying features of interest in core photography. Coupled with domain expertise, these 

algorithms can provide a computer vision-assisted core logging process, significantly increasing the value of 

downhole datasets. We have developed a novel workflow using computer vision to automatically identify 

discing regions, highlighting areas of the rock mass exposed to high in situ stress. By detecting every fracture 

and measuring their angles, we can define discs, group adjacent discs to create a discing region, and then 

group nearby regions to extract a consistent dataset. This workflow allows geotechnical engineers to establish 

a standard discing definition, facilitating high confidence in the data. 

The outputs are evaluated against traditionally logged geotechnical data to create a detailed comparison. This 

study demonstrates that detailed, consistent, and auditable geotechnical data can be extracted using computer 

vision and core imagery, significantly improving data collection workflows for the mining industry. This approach 

enables mine planners and geotechnical engineers to proactively manage potential hazards, integrate these 

risks into mine design and scheduling, and ultimately ensure safer and more efficient mining operations. 

The developed workflow was implemented at the Sunrise Dam Gold Mine (SDGM), demonstrating the 

advantages of computer vision-assisted core logging over traditional methods. This implementation 

underscores the potential of our approach to enhance the efficiency and reliability of geotechnical data 

collection in the mining sector. 

Keywords: geotechnical data, drillcore, discing, geotechnical hazards, artificial intelligence, computer vision, 

machine learning 

1 Introduction  

Discing, also known as core discing (or core disking) is a phenomenon where cylindrical rock core breaks into 

thin, disc-shaped fragments during drilling. When drilling into rock, especially at great depths, the rock 

surrounding the borehole is subjected to significant in situ stresses. These stresses are typically compressive 

and are due to the weight of the overlying rock and other geological forces (Jaeger & Cook 1963; Stacey 

1982). As the drill bit advances into the rock, it creates a cylindrical hole. The material that is drilled out of 

this hole was previously bearing part of the in situ stresses. This process of stress alteration and relief causes 

the discing phenomenon (Zheng et al. 2020). The resulting disced cores often display smooth, saddle-shaped 
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fracture surfaces, indicative of the intense stress conditions they endure. In highly stressed environments, 

the spacing between adjacent discs tends to decrease, signalling higher stress concentrations (Stacey 1982). 

Discing is a critical indicator of the stress state within a rock mass, signifying the presence of significant tensile 

stresses perpendicular to the borehole axis that exceed the rock's tensile strength, leading to fracturing (Jaeger 

& Cook 1963; Stacey 1982). Understanding the occurrence of discing is essential for grasping the mechanical 

behaviour of the rock and making informed decisions about mining methods and locating infrastructure. 

Furthermore, by analysing the patterns and characteristics of core discing, engineers can infer stress conditions 

and make more informed decisions regarding mine design and support systems (Jaeger & Cook 1963; Stacey 

1982). As a result, having a high quality, deposit-wide discing dataset can facilitate a better understanding of 

the stress distribution within the rock mass which is important for several aspects of a mining operation.  

Traditionally, discing data is collected manually by geologists and geotechnical engineers. This involves 

examining core samples for fractures, measuring the thickness and orientation of the discs, and recording 

these observations (Jaeger & Cook 1963; Stacey 1982; Li et al. 2019; Zheng et al. 2020). However, this process 

is time-consuming and prone to human error, resulting in inconsistencies and difficulties in data 

reproducibility (Ohta 2001; An et al. 2017; Belov & Ivanov 1992). 

Discing regions are often described in terms of the number of discs per unit length or the thickness of the 

individual discs. The thickness of these discs can vary significantly depending on stress conditions, with 

thinner discs indicating higher stress levels (Jaeger & Cook 1963; Stacey 1982). The manual logging of discing 

regions is challenging due to the subjective nature of visual inspections and the variability in human 

observations (Ohta 2001; Corthésy & Leite 2008). This method is labour-intensive and often fails to capture 

the full extent of the discing phenomenon, especially in complex geological settings (An et al. 2017; Matsuki 

et al. 2004). Furthermore, the manual approach does not lend itself well to the high throughput demands of 

modern mining operations, where quick and accurate data collection is essential (Zheng et al. 2020). 

Recent advancements in computer vision and deep learning offer promising solutions to these challenges. 

Automated systems can analyse core photographs to identify discing regions accurately and consistently. 

By detecting and measuring fractures and their orientations, these systems can define discs, group them into 

regions, and aggregate nearby regions to create comprehensive datasets. This automated approach ensures 

high confidence in the data, improving the reliability and efficiency of geotechnical assessments. 

Computer vision-assisted logging not only speeds up the data collection process but also enhances the 

accuracy and auditability of the data. This is particularly beneficial for creating detailed comparisons between 

traditional logging methods and automated systems, highlighting the strengths and weaknesses of each 

approach. Studies such as those by Jutzeler et al. (2023) on volcanic stratigraphy reconstruction using 

machine learning, and Johnson et al. (2023) on extracting geotechnical data from drillcore imagery at the 

Carrapateena deposit, demonstrate the efficacy of these advanced techniques. Other works, such as those 

by Jutzeler et al. (2022) on machine-learning image analysis to reconstruct lithostratigraphy in mineralised 

terrains, and Jutzeler et al. (2021) on quantifying crystal size distribution in volcanic rocks, further validate 

the potential of machine learning in geological studies. Additionally, research by Dagasan et al. (2021) on 

inferring geological features masked by artefacts in core photography using neural networks underscores the 

importance of these technologies in enhancing geological interpretations. Ultimately, the integration of 

computer vision in core logging represents a significant advancement in geotechnical engineering, offering a 

robust tool for improving mining operations and safety. 

In this paper, we explore the automated extraction of discing regions from core photography using computer 

vision. The proposed workflow leverages deep learning algorithms to detect and measure fractures, grouping 

them into discing regions. This method is evaluated against traditional manual logging, with the findings 

indicating significant improvements in data consistency, accuracy, and auditability. We applied this method 

at the SDGM in Western Australia, where it was identified that a reliable discing dataset was required to 

better characterise the rock mass. The integration of computer vision in geotechnical data collection at SDGM 

has the potential to enhance mining safety and efficiency, providing a standardised and reliable approach to 

understanding in situ stress conditions in rock masses. 
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2 Sunrise Dam Gold Mine 

The Sunrise Dam Gold Mine (SDGM), located 55 km south of Laverton, Western Australia, is a significant 

producer of gold for AngloGold Ashanti. This large-scale operation leverages both open pit and underground 

mining methods to extract ore from the Laverton Greenstone Belt. Production commenced in 1997 from the 

open pit, which reached its final depth of 500 m by 2014. Underground mining, targeting ore deposits that 

extend to depths greater than 1,400 m below the surface, began in 2003 and has since become the primary 

source of ore. As outlined by AngloGold Ashanti (2023), SDGM has a gold mineral reserve estimated at 1.04 

million ounces, and the mine produced over 252,000 ounces of gold in 2023. A dedicated workforce of 763 

people keeps the mine operational. 

Over the SDGM mining area, more than 2,400 km of diamond drilling have been collected and geologically 

logged. In comparison, a total of 480 km of the diamond drilling has been geotechnically logged, which has 

been undertaken by a mix of consultants, graduates, geologists and geotechnical technicians or engineers 

over the life of operations depending on the data collection strategy at the time. Logging methodology also 

evolved over the years of operation as the focus on different data types was clarified as the orebody and rock 

mass knowledge developed. However, this meant it was difficult to quantify the accuracy of historical logs of 

some data types that may have not been collected as comprehensively as needed for new analysis. As some 

areas of the SDGM resource head deeper, stress-related hazards have the greater potential to affect mining. 

This has proactively been recognised to requiring more comprehensive logging of discing to identify areas of 

high stress to build into hazard mapping and risk amelioration strategies. 

As historical data consistency and discing logs required review, building a robust stress data model collection 

was considered paramount for creating a comprehensive approach to risk management. However, the task 

of reviewing and accurately identifying areas of discing throughout hundreds of kilometres of core is both 

resource-intensive and slow.  

Machine learning offers a cost-efficient and time-effective way to collect consistent, validated datasets over 

vast amounts of data with minimal human resources being taken away from operations or incurring large 

consulting fees. This methodology also provides meaningful data in a fraction of the time needed to review 

historical core photos. This has enabled the use of holes not previously geotechnically logged, such as 

exploration holes and diamond resource drilling, to identify areas of potential stress-related discing and 

better understand where the mine may experience issues during excavation. 

3 Method 

3.1 Overview 

The method developed involves several steps to extract discing regions from core imagery. These steps can 

be seen in Figure 1 and will be explained in more detail in the following sections. 

Core discing ranges from crushed through the thick discs (Lim & Martin 2010), and the visual differences 

within the core images across the range can be quite different so it is important to have a workflow that is 

robust to this variation. We have developed two key methods for identifying discs: 

• Fracture angle analysis: This method assesses the angle of individual fractures to identify regions of 

medium to thick discs. 

• Crushed/thin discing detection: This method identifies regions of discing where individual discs 

cannot be assessed and are instead detected as a whole region. 
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Figure 1 Overview of the workflow to extract discing regions from core imagery 

3.2 Depth registration 

Depth registration is the process of assigning accurate depths to core images, which is crucial for pinpointing 

locations of specific structures, such as discing. Accurate depth registration also enables reliable comparisons 

and calibration with other downhole datasets. This process involves several preprocessing steps to produce 

‘analytics-ready’ imagery. These steps include de-warping images as needed, cropping core trays and rows, 

identifying coherent and incoherent rock within rows, quantifying compaction in incoherent rock, addressing 

core loss, correcting metadata entry errors, and applying optical character recognition to depth annotations. 

In this paper, we employed the Datarock Core product to prepare core row images for analysis. Examples of 

depth-registered rows and the assigned depths are illustrated in Figure 2. 
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Figure 2 Example of a depth-registered core rows generated by the Datarock Core product. Each row has 

assigned depths from and to, including detected depths based on handwritten metre marks 

(green markers) and inferred depths (yellow markers) 

3.3 Angle-based disc detection 

Fracture angle analysis is crucial for identifying discing, as discing usually occurs roughly perpendicular to the 

core axis. However, due to the handling and placement of the core on the tray, these angles cannot be perfectly 

perpendicular. Therefore, we have developed a method to assess whether the fracture angle relative to the 

core axis could potentially belong to a discing. The following sections will describe the method in more detail. 

3.3.1 Detecting fractures 

The method for identifying discing regions is based on detecting and classifying fractures within 

depth-registered core images. We used RetinaNet (Lin et al. 2017) to train an object detection model that 

classifies fractures into six main categories. Examples of these fracture classes can be seen in Figure 3. 

 

Figure 3 Example of the fracture detection classes used to identify the various types of fractures that are 

present within the core for identifying discing regions 

We developed specific classes to categorise fractures within a geotechnical context, providing a consistent 

training dataset for our object detection algorithm. The training dataset was compiled by sampling and labelling 

individual row images to represent the global variability of the data. The dataset was then used to train the 

fracture detection model, which performed fracture detection on each depth-registered row image, as 

illustrated in Figure 4. 

 

Figure 4 Example of fracture detections within a discing zone 
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3.3.2 Generating fracture masks 

A key step in enabling detailed analysis of each individual fracture is the generation of a clean fracture mask. 

In the context of segmentation, a mask is a binary image where pixels corresponding to the fracture are 

marked, allowing for accurate geometric analysis. The following steps outline how the detected fracture is 

converted into this fracture mask, and are depicted in Figure 5: 

1. Fracture crop: Once the bounding box of measurable or displaced fractures is identified, the 

bounding box is used to crop the image. 

2. Raw fracture segmentation: The cropped image is then fed into a segmentation model, which 

predicts a segmentation mask for the fracture. 

3. Thresholding: The output from the segmentation model undergoes thresholding to refine the mask, 

ensuring that only the pixels belonging to the fracture are selected. 

4. Mask cleaning: The initial mask may undergo further processing to remove noise and ensure clean 

edges, resulting in a more accurate representation of the fracture. 

 

Figure 5 Example of the steps to generate a fracture mask. These steps are completed on every detected 

fracture 

3.3.3 Measuring fracture angles 

After generating the clean fracture masks, the next step involves calculating its angle with respect to the core 

axis. The two steps are described here, with an illustration of the line fitting in Figure 6. 

1. Line Fitting: A line is fitted to the segmented fracture mask to represent the fracture's orientation. 

2. Angle Measurement: The angle of the fitted line is measured with respect to the core axis. 

 

Figure 6 Example of fitted lines used to calculate the angles of fractures. The fitted lines represent the 

orientation of the fractures, with angles measured relative to the core axis 

3.3.4 Finding discs 

Once the fracture locations are found in terms of depth, the distance between successive fracture centres is 

calculated, and any distance less than 4 cm is flagged as a potential disc. This serves as a filter based on disc 

size, ensuring that only relevant discing features are considered for further analysis. For each detected disc, 

the following properties are calculated: 

• Right and left depths: The starting (left) and ending (right) depths of the disc. 

• Right and left angles: The angles measured at the starting and ending depths. 

• Disc Size: The difference between the right and left depths. 

• Disc Depth: The midpoint between the right and left depths. 
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The data is further filtered based on the angles of the fractures to ensure consistency. Both the right and left 

angles are checked to ensure they do not deviate by more than 10° from 90° with respect to the core axis, 

indicating they are nearly perpendicular to the radial axis. Additionally, the absolute difference between the 

left and right angles is checked to ensure it does not exceed 5°. This dual-threshold approach ensures only 

discs with consistent angle measurements that exhibit discing characteristics are retained. Figure 7 illustrates 

some of the examples that pass the discing filtering.  

 

Figure 7 Examples of fracture angles that are either suitable or not suitable for potential discing 

3.4 Region-based discing detection using an object detection algorithm 

In areas with a high presence of broken rocks and irregular discs, a separate model is employed to identify 

discing regions. This model, an object detection model using RetinaNet, encloses the start and end locations 

of a discing region within a bounding box. This approach was necessary due to the wide-ranging visual 

appearance of discing regions. The object detection method is chosen for its ability to accurately detect and 

localise objects within an image, which makes it suitable for identifying complex discing regions that may not 

be easily captured through angle measurements alone. An example of a discing region that can be better 

captured by the object detection can be seen in Figure 8. 

 

Figure 8 Complex discing regions shown on the left end of the image are better suited for detection by 

the region-based approach rather than the angle-based one 

3.5 Overlap detection and interval merging 

To combine the discing regions from angle-based and region-based methods, the algorithm checks for 

overlaps between discs and broken regions within each hole. The length of the overlap is computed, and 

when overlaps are detected, the intervals are extended. The overlap percentages are calculated to update 

the disc properties accordingly. This ensures that overlapping intervals are merged, and their properties are 

adjusted to reflect the combined region. Broken regions that do not overlap with any disc are processed 

separately to ensure accurate representation in the final analysis. These non-overlapping regions are handled 

by extending the intervals and updating their properties independently, maintaining the integrity of the 

overall dataset. The diagram in Figure 9 explains how the merging takes place. 

Plenary session papers

Deep Mining 2024, Montreal, Canada 143



 

 

Figure 9 Diagram illustrating the merging of discing regions from angle-based and region-based methods 

3.6 Finding discing zones 

After merging angle-based and region-based discs, the discs are grouped based on depth differences within 

each hole. For instance, if two of the same angle-based discs are successive, they are designated as a single 

discing region. The resulting outcome is referred to as granular discing. Each discing region is summarised in 

terms of average disc size, number of discs, average angles and mean of absolute angle differences. 

These summaries provide a comprehensive overview of the discing patterns within the borehole. An example 

diagram illustrating this merging process is shown in Figure 10. 

 

Figure 10 Example diagram showing the merging of angle-based and region-based discs into a single 

granular discing region-based on depth differences 

3.7 Merging nearby disc regions 

Discing logging is usually done by grouping (or lumping) discs together to define larger discing zones. 

One reason for this approach is that granular discing detection data can result in numerous small regions and 

grouping them facilitates easier analysis on a larger scale. This data is also provided along with the granular 

discing regions. The principle is that if granular discing zones are within 30 cm of each other, they are grouped 

together. An example of the grouping process is illustrated in the diagram in Figure 11. 

 

Figure 11 Example diagram illustrating the grouping of granular discing zones into larger discing regions 

based on proximity 
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4 Results  

In this section we review the detected discing regions using two methods: 

1. Using holes where manual site logging (including discing) has been completed, we compare 

detected discing against site logging. This dataset consists of nine holes, or 7,200 m of drillcore. 

2. Using long (1,000 m+) holes across the site to provide vertical and lateral coverage across the 

deposit, we compare the detected discing against site modelled structures to determine if there is 

a correlation between the two. This dataset consists of 77 holes, or 85,000 m of drillcore. 

4.1 Comparison against logging 

Across the SDGM deposit, there were nine holes that included logged discing regions. These were used to 

compare against the detected discing created by the method described in this paper. As described in 

Section 2, historically there was not a significant need to understand the in situ stress regime, therefore it 

was expected that there would be regions of discing that had not been logged.  

An example downhole plot in Figure 12 shows the areas where major discing takes place. As illustrated, there 

is strong agreement around 610–650 m, while there are other regions detected where logging was not 

recorded (as expected). Examples of these are described in this section. 

 

Figure 12 Downhole plot comparing detected and logged discing regions 
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4.1.1 Example of true positive where logged interval also exists (agreement between datasets) 

A true positive is where a detected discing region corresponds to an actual discing region, regardless of 

whether it was logged onsite or not. 

It can be observed that both datasets identify discing in the 610–640 m range. Within this range, both 

datasets have an interval from 626–632.2 m, meaning this is a good example where both the detections and 

the logging are correct. 

On review of the logged intervals across this dataset, it was generally the case that where there was a logged 

region of discing, there was a corresponding detected region. An example of true positive discing region is 

shown in Figure 13. 

 

Figure 13 Example of a discing region that has strong correlation between logged and detected datasets. 

Angle lines are shown in light blue, region-based detections are shown in the orange boxes 

4.1.2 Example of true positive detection where no logging exists  

True positives also occurred in areas where there was no corresponding logged region. 

An example of this can be observed in Figure 12 where there is a major discing region around 330–350 m 

which was not in the site logging dataset. This discing region was detected by the developed workflow, and 

a portion from 318–326 m of the core imagery from this region can be seen in Figure 14. 
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Figure 14 Examples from the major discing region detected by the developed algorithm. Angle lines are 

shown in light blue, region-based detections are shown in the orange boxes 

4.1.3 Example of false positive detection where no logging exists 

A false positive is where a detected discing region does not correspond to an actual discing region. 

An example of this can be observed in Figure 15 where there is a region-based detection at 93.3 m. There is 

broken rock with rounded surfaces within the zone, resulting in the model incorrectly identifying the region 

as discing. Minimising false positives will be a key area of further development to enhance its accuracy and 

robustness, with two key areas of focus being: 

1. Incorporating additional manually labelled training data to cover more variability in the core imagery. 

2. Refining the model architecture to ensure it is best fit for this use case. 
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Figure 15 Example of a false positive discing detection in the orange box 

4.1.4 Comparison to site modelled structures 

To gain a better understanding of the performance of the discing detections, detected regions were modelled 

against the site modelled structures which may have higher stress concentrations such as the shear or 

faulted zones. 

Using a total of 77 long holes (typically greater than 1,000 m in length) to provide vertical and lateral coverage 

across the deposit, approximately 85,000 m of drillcore was processed using the described workflow, 

generating a total of 774 individual discing regions. It should be noted that this dataset was selected to provide 

coverage, however it is only 6% of the available core imagery, and it is the authors’ intention to process the full 

dataset once further improvements of the method have been completed (as the following discusses). 

Comparison of the workflows identified that discing was highly correlated with the interpreted large-scale 

structures as illustrated in Figure 16. However, additional zones were also highlighted away from modelled 

areas, indicating that additional zones of high stress or large-scale structures may be present and will need 

further interpretation. 

Of the discing regions furthest away from modelled structures, several are false positives associated with 

closely spaced broken rock, generally at the relatively shallow areas of the mine. However additional true 

positives have also been identified that can be used to further inform the structural model in the region. 

As additional drill holes are added to the dataset, it is expected the structural trends will be more easily seen 

and false negatives will become visibly identifiable as outliers. 

 

Figure 16 Correlation between discing regions and shear/fault structures. The colours indicate the distance 

between the discing locations and the shear/fault structures 
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Another interesting observation was made from some of the discing regions which were perpendicular to the 

dominant direction of faulting and could potentially be un-modelled structures, as can be seen in Figure 17. 

 

Figure 17 Discing regions at roughly 400 m spacing that are perpendicular to the dominant direction of 

faulting, which could indicate un-modelled structures. Indicative large structures shown to 

indicate the primary modelling trend of structures 

5 Discussion 

The results show that the detected discing regions extracted by this method correlate well with the actual 

discing regions. While diamond drilling itself is quite expensive, drillcore photographs are among the least 

expensive yet highly informative datasets that all exploration projects, development projects, and 

operational mines routinely collect. The implications of having a robust method for extracting discing regions 

from these images are significant, especially in the context of deposits trending deeper, becoming larger, and 

presenting lower grades. 

Identifying geotechnical structures is paramount for a mining operation. Proactively managing potential 

hazards enables mine planning engineers and geotechnical teams to integrate these risks into the mine's 

design and scheduling. This leads to more robust schedules for mine planners, as understanding rock mass 

conditions allows for adjustments in production rates and strategic planning of stoping areas, thus managing 

ore delivery to the crusher more effectively. 

Geotechnical engineers can utilise this information to identify areas requiring additional rigour in design, 

adjust ground support plans, and reduce uncertainty in their designs. This proactive approach ensures safer 

and more efficient mining operations. 

Using the machine learning approach outlined here provides a more accurate and consistent methodology 

applicable across the entire deposit. This approach allows site or corporate engineering teams to create a 

standard discing definition, facilitating high confidence in the data. It eliminates the need for significant time 
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and resources to manually review historical information. For instance, processing and logging 85 km of core 

data would require an experienced geologist or engineer several months to complete, whereas machine 

learning can compile this data within hours, free from the subjectivity and errors associated with logging fatigue. 

While the detailed approach works very well, there are several areas that will benefit from additional 

development to maximise its performance and utility: 

• Improvements on fracture detection and segmentation: Although the computer vision models are 

highly effective in identifying core discing, it's essential to acknowledge that no model is perfect. 

Incorporating additional training data and refining the model architecture could further enhance 

its accuracy and robustness. Improving these models will likely have the most significant impact on 

reducing false positive detections. 

• Better refinement of discing regions: Currently, disc sizes, discing angles, and disc angle deviations 

are specified to define the discing regions. Further investigation of these parameters could lead to 

a more generalised and accurate model. 

• Incorporation of roughness and curvature: Currently, the angle-based method uses fracture angles 

alone. In the future, it may be beneficial to expand it to a fracture analysis method that also 

incorporates joint roughness (by assessing the profile of the fracture mask against an inferred 

fracture ellipse) and fracture curvature. These additions could better describe and distinguish the 

discing regions. 

• Further classification of region-based detections: Currently, only one category of broken regions is 

detected. Introducing various classes into the region-based detection model could identify 

additional information, such as disc thickness (crushed, very thin, thin, etc.), leading to a better 

understanding of discing intensity. 

6 Conclusions 

We have presented a computer vision-based workflow capable of detecting, classifying, and extracting 

discing regions from historical core photography. This method has been successfully applied to imagery from 

the SDGM, producing data that is highly comparable to the actual discing that exists in situ, and has been 

used to extract a deposit-wide dataset.  

Additionally, the method successfully detected discing regions that strongly correlate with interpreted 

large-scale structures within the deposit, and it has the potential to identify un-modelled structures. 

The nature of this approach instils high confidence in the data for engineering teams, significantly reducing 

the time and resources needed to review historical information manually and minimising the potential for 

rework due to inaccurate logging. 

It is anticipated that once the discussed improvements are explored and, where appropriate, implemented, 

the Sunrise Dam team will incorporate the data into various aspects of the mining operation, enhancing 

operational efficiency and decision-making. 
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