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Abstract 

This paper presents a methodology and the results of workflow developed to process point cloud data from 

underground drifts for condition monitoring of ground support. The workflow focuses on extraction and 

comparison of information of individual rockbolts and rockbolt neighbourhood prior to, and following, 

recorded seismic events. Data sources used in this methodology are point cloud data resulting from mobile 

LiDAR scanning and event data of blasting and microseismic events. In the first step of the workflow, locations 

in the drift with recorded microseismic events in the vicinity are selected. In the second step, LiDAR scans 

performed before and after the occurrence of one or more natural or man-made events are used to extract 

point cloud data within a region close to the recorded events. The extracted point cloud data is processed to 

compute information about the rockbolts. For each detected rockbolt, the following information is extracted: 

position on drift surface, tip position, angle to drift surface, length, neighbouring rockbolts, and rockbolt to 

neighbour’s distances. In the next phase, the rockbolt information extracted from two or more scans over the 

period encompassing the event are analysed. Corresponding rockbolt information from pre-event and 

post-event point cloud data are used to compute variation in rockbolt features. The computed variations are 

examined statistically and used to create a visualisation for decision support to be used by rock mechanics 

engineers and surveyors. 
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1 Introduction 

Deep mining is a key enabler for long-term growth. The process of deep mining depends on creation of drifts 

through the process of drilling, blasting, loading, hauling, scaling, etc. allowing access to the orebody. 

The process of excavation rearranges the stresses near the void, which may lead to deformation. 

The convergence is generally less than the critical threshold of ~1% (10 cm in 10 m diameter) (Sakurai 1984). 

To retain the convergence within critical limits, the rock mass is reinforced to conserve the inherent strength 

and make the excavation self-supporting (Li 2017). Reinforcement is provided through ground support, with 

the aim of stabilising the rock masses. Rockbolts are a widely used support element in underground mines 

and civil tunnels (Li 2017). Deformation may tear the plate while the rockbolt remains intact or the bolt may 

lose its capacity and may move under gravity (Simser 2007). Continual evaluation of deformation is critical 

for maintaining safety. 

Conventional instruments for geomechanics monitoring work on a point-to-point basis, hence spatially 

continuous displacement data acquisition and monitoring is challenging (Jones 2020). LiDAR mapping 

technology developed through laser scanning has improved over the years in terms of scan resolution and 

accuracy. Today, LiDAR is being used in varied fields like detection of forest cover, mapping of archaeological 

sites, urban planning, study of geomechanics and, more recently, self-driving cars (Fernandes et al. 2021; 

Poux et al. 2017; Romero-Jarén & Arranz 2021; Xue et al. 2020). LiDAR provides a fast and efficient method 
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of 3D spatial data collection over a large area through static or mobile scanning. Mobile scanning can be 

performed by carrying the device by hand or mounting it on a vehicle, drone, or robot. 

LiDAR has been in use for terrestrial monitoring in the geographical information systems, it was extended to 

mining, and has been used for accurate surveying, volume and mass calculation, true-to-scale map 

generation, and asset inventory generation, providing data economically in terms of time and manpower. 

Data collection and processing has improved rock face monitoring, slope stability monitoring, deformation, 

and to understand long-term trends in rock behaviour (Gigli & Casagli 2011; Leottau et al. 2020; Walton et 

al. 2018; Yu et al. 2011, 2010). 

As one of the applications of extraction of information from underground tunnel point cloud data, 

researchers have targeted the problem of extraction of rockbolt information (Gallwey et al. 2020; Li et al. 

2022; Martínez-Sánchez et al. 2016; Saydam et al. 2021; Singh et al. 2021a, 2021b). The modality followed in 

most of the techniques developed by researchers follows the path of noise filtering, uniform down sampling, 

extracting point-based features based on eigenvalues (Weinmann et al. 2017) and fast point feature 

histograms (Rusu et al. 2009) and training neural network or random forest classifiers, clustering and finally 

applying a cluster evaluator to extract rockbolt point cloud data. Use of extracted rockbolt information has 

seen limited application and has been used only for registration of two or more scans for comparison of the 

surface shotcrete coating (Martínez-Sánchez et al. 2016). 

To quantify the change in surface over a period, comparative measurement of surfaces between two point 

cloud data sets is required. This problem has been addressed for comparison of terrestrial surfaces through 

Multiscale Model to Model Cloud Comparison (M3C2) (Lague et al. 2013). To quantify the effect of tunnel 

deformation, the algorithm must be adapted to the tunnel design. 

Data processing software should have the functionality to understand the specific requirements (3D spatial 

data) to process and extract information useful to the domain experts. Hence, effort towards development 

of algorithms and software for processing of point cloud data for analysis and automation can facilitate 

making more informed decisions. Further, point cloud data analysis requires that the alignment between the 

primary and secondary scans are sufficiently accurate and the analysis should show the magnitude of 

movement and distinguish between convergence and divergence (Jones & Beck 2018). 

In this paper we address condition monitoring of rockbolts using point cloud data by addressing the 

following gaps: 

1. Extraction of rockbolt information in regions with high density non-rockbolt items including meshes 

and steel ribs. 

2. Quantification of deformation and error correction based on local registration error between the 

compared scans. 

3. Visualisation of magnitude of movement between the compared scans and indicators for 

convergence and divergence. 

2 Method 

This section describes the steps carried out for extraction, processing and visualisation of rockbolts for 

performing condition monitoring. LiDAR scanning and surveying is carried out at regular intervals resulting in 

data used for processing. The complete processing pipeline is developed in Python programming language 

using open-source tools and libraries such as Open3D (Harris et al. 2020; Van Rossum 1995; Zhou et al. 2018). 

In the first stage, processing of the point cloud extracts the information about the rockbolts. In the second 

stage, the extracted rockbolt information from two consecutive point clouds is analysed to compare the 

rockbolts information. Finally, in the third stage, visualisations to represent the computed results are 

generated for decision support. 
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2.1 Region of interest selection 

The entire region of underground tunnels may not be of interest for continual inspections. Such inspection 

will affect the production process due to survey requirements and will require a high amount of both 

computation and data management. A region of interest can be selected based on mine engineer’s 

experience and observations. In addition and in this paper, available data sources such as blasting times and 

microseismic events have been used to locate the region of interest. 

In this paper, the region of interest is an intersection point of three tunnels. This region has been selected 

due to the recorded microseismic activity under the tunnel, four hours after the blasting was carried out in 

one of the connected tunnels. The selected region is approximately 6 × 6 × 6 m in dimensions with around 

700,000 points in the point cloud. 

2.2 Rockbolt information extraction 

To perform condition monitoring of the rockbolts, information regarding their position on the tunnel surface, 

and their protruding length is required. By performing a comparison of this information extracted from 

multiple point cloud scans, the condition of individual rockbolts can be evaluated. Extraction of information 

of individual rockbolts from the point cloud is performed in a series of steps and these are described briefly 

as follows: 

• Point cloud data quality evaluation: The point cloud data within the same organisation can be 

acquired through different LiDAR devices and this impacts the quality of the data. Also, since the 

LiDAR acquires the surface data through reflected beams, the density of the points depends on the 

distance of the surface from the device. Finally, the density of the point cloud also depends on the 

reflectivity of the surface. Various algorithms used for processing the point cloud data are 

dependent on the neighbourhood distance values of the point cloud data, hence an initial 

evaluation of the nearest neighbour distance is performed and is used as a parameter for algorithms 

in the data processing pipeline. 

• Point cloud voxelisation: Voxelisation segments the point cloud data based on virtual cuboids in 3D 

space. This is required since storage of individual points in point cloud data does not correspond to 

the relative positioning of the points in the real world. Voxelisation is used to extract a 

neighbourhood of points for analysis. In this paper, a voxel of side length 40 cm is created using the 

library function available in Open3D, since protruding rockbolt size had been observed to be less 

than this value. 

• Voxel surface extraction: The set of points extracted within the voxel represent a small region of 

the tunnel surface. A plane is fitted to the extracted set of points. This results into two sets of points 

inliers and outliers. Inliers are the set of points lying within a threshold of the plane and outliers are 

the set of points lying beyond the threshold. The threshold is based on the standard deviation of 

the surface of the point cloud and computed during the point cloud quality evaluation phase.  

Also, the fitted plane is used to generate a surface normal and inlier points are used to generate a 

surface centroid.  

• Outlier clustering: The outlier is a set of points representing the objects on the tunnel surface 

beyond the inlier threshold value where the inlier represents the tunnel wall. This includes 

rockbolts, steel mesh, steel ribs, power cables and ventilation pipes. After removing the inliers, the 

outlier points are clustered using density-based spatial clustering of applications with 

noise (DBSCAN) clustering (Ester et al. 1996). DBSCAN requires nearest neighbour distance as a 

parameter and depends on the point cloud data quality. This value is computed during the initial 

data quality evaluation stage. This creates disjointed clusters representing the objects near the 

tunnel surface. 

• Cluster evaluation: Some of the formed clusters may represent rockbolts, hence the clusters are 

evaluated individually. A set of criteria that describes a rockbolt’s representation in point cloud data 
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was developed. The criteria evaluate the number of points, length of the cluster along its principal 

axis, angle between the principal axis of the cluster and the inliers plane surface normal, and finally 

the minimum distance between the cluster and the surface plane. Each cluster is evaluated based 

on each of the previously mentioned criteria. The clusters that satisfy all the criteria have the set of 

points representing the rockbolts. 

• Rockbolt surface position extraction: At this stage, the remaining clusters are the rockbolts.  

The position of the rockbolt on the surface is extracted by computing the point of intersection 

between the principal axis of the cluster and the plane surface. 

• Rockbolt tip position extraction: The farthest point in the cluster from the plane surface is saved as 

the rockbolt tip position. A combination of the rockbolt surface position and tip position provides 

the protruding length and the orientation of the rockbolt. 

• Rockbolt data export: The data extracted from the previous computation is saved for future 

computations. The following information for each rockbolt is exported: surface normal, surface 

centroid, surface point, and tip point. 

2.3 Rockbolt condition monitoring 

After the LiDAR scan is performed, the point cloud data is processed and rockbolt data is extracted as 

described in the previous section. The time and region of interest are selected based on the logged 

microseismic events. Condition monitoring of rockbolt data is performed by processing the point cloud data 

and extracted rockbolt information from two consecutive scans surrounding a microseismic event. In this 

paper the two scans will be called the previous scan and the latest scan for clarity. The condition monitoring 

of the rockbolt is performed based on rockbolt protruding length and change in orientation with respect to 

the tunnel surface. The data processing steps required to perform rockbolt condition monitoring are 

described in this section. 

Data import: At this stage, point cloud data and the rockbolt information associated to the point cloud data 

as exported from the previous stage are available. Based on the logged microseismic events time and 

location, two scans and rockbolt information are loaded as the previous and the latest data sets. 

Registration error quantification: Underground tunnels are a GPS denied environment, i.e. absolute 

localisation is not possible due to lack of GPS signals. Relative localisation is performed as per the mine 

coordinate system. Surveyors perform the LiDAR scanning and localise the point cloud to the mine coordinate 

system with the help of markers located on the tunnel surface. This process is called the registration of the 

point cloud. Registration may result in a small error in the positioning of the point cloud. This error has six 

degrees of freedom, i.e. translation and rotational errors along the three axes. Also, this error is spatially 

variable along the tunnel surface. Since the rockbolts will be compared to their counterparts in other scans, 

quantification of registration error is required for the entire tunnel surface. 

Local registration error between two point cloud surfaces can be measured by using the M3C2 algorithm 

(Lague et al. 2013). M3C2 algorithm is applied as follows: 

1. A key point representing the location is selected in first point cloud. 

2. A set of points within a given radius R, forming a neighbourhood are selected (R depends on the 

surface variability). 

3. A surface normal for this set of points is computed, i.e. perpendicular to the surface created by the 

set of point. 

4. A second set of points within a radius r and centre at the key point are selected such that r < R. 

5. The second set of points are projected on to the surface normal and mean and standard deviation 

of the projected points are computed. 
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6. For the second point cloud, the points within the radius r around the surface normal are selected 

and the mean and standard deviation of the projected points is computed.  

Figure a shows the two point clouds, the key point and r being the radius of the cylinder. Figure b shows the 

surface normal (as described in M3C2 algorithm) as the axis of the cylinder and the distribution of the 

projected points from the two points clouds. 

 

(a) (b) 

Figure 1 Comparison of two point cloud surfaces. (a) Two point clouds, the key point and r (radius of cylinder); 

(b) Surface normal as the axis of the cylinder and the distribution of the projected points  

To apply the above algorithm to a tunnel, some modifications are required. The voxels as a region within R, 

their surface normal, and surface centroids as key points have been used to apply the M3C2 algorithm.  

The key points and surface normal computed for the latest scan are used for the computation. Figure  shows 

a part of the point cloud. The cuboids represent the direction of the surface normal and the points within the 

cuboid are used to compute the distribution of the points. 

 

Figure 2 Locations used for computation of local registration error 
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Figure 3a shows the distribution of points for the latest and the previous scans at a single location. Figure 3b 

shows the histogram of differences between the mean values for all the locations. It can be observed from 

Figure 3b that the distribution is confined between ±0.025 m and this represents the local registration error 

between the surfaces of the two point clouds. 

 

(a) (b) 

Figure 3 Measurement of surface distance. (a) Latest and previous surface point distribution at a single 

point; (b) Histogram of difference of mean computed at all the locations 

Rockbolt pairing: To extract the condition of a rockbolt over time, individual rockbolt information from two 

point cloud scans has to be extracted. To establish one on one correspondence between the rockbolts from 

two scans, the Euclidian distance between all the rockbolt surface points obtained from the latest and 

previous scan are computed. In the previous step, it was observed that the spread of registration error was 

±0.025 m, as seen in Figure 3b. Hence, to compensate for the registration error, rockbolts with their surface 

point pairs with the distance less than 0.05 m are retained. It should be observed that the Euclidian distance 

between the rockbolts should be within ±0.025 m. The value was doubled to compensate for errors along six 

degrees of freedom. Also, since the rockbolts are not installed within 0.05 m of each other, this will not lead 

to any errors in identifying the corresponding rockbolts. 

It was observed that one-on-one correspondence for all the rockbolts was not generated in the previous  

step and this can be due to the fact that rehabilitation is performed on a regular basis due to the instability 

of the region. 

Rockbolt length comparison: For all the corresponding rockbolts detected from the two scans, a protruding 

length comparison is performed. Since, for each rockbolt, the surface point and the tip point had been 

exported, the difference of these two values is the length of each rockbolt. It should be noted that since the 

rockbolt length is computed between the surface and tip point of the rockbolt, it is not affected by the 

registration error.  

Rockbolt orientation comparison: Similar to the previous step, the orientation of each rockbolt is computed 

as a vector between the surface and tip point. The angle between the corresponding rockbolts is computed 

using the dot product between the orientation vectors. 

Deformation in area between the bolts: Presence of rockbolts in the form of ground support should reduce 

the deformation. However, the regions farthest from the rockbolts can be of interest to determine the need 

for rehabilitation based on cumulative deformation. Extraction of deformation information for the farthest 

regions is carried out as follows: 

1. For the detected rockbolts in the latest scan, a mesh is generated such that the rockbolt surface 

positions are the vertices of the triangles formed in the mesh, as seen in Figure 4.  
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2. Rockbolt neighbourhood area and centroid computation are computed for each triangle that is 

formed in the mesh with the vertices as the rockbolt surface points.  

The area is used to filter large triangles which may be formed in open spaces (based on outliers from standard 

deviation). The centroid location is used to compute the surface-to-surface distance between the two point 

clouds and a correction is applied based on the average registration error from the three vertices of the 

triangle (rockbolt surface positions). 

 

Figure 4 Mesh of tunnel surface with rockbolts as vertices 

2.4 Visualisation 

Underground tunnels, and hence the collected data such as the blasting, microseismic events and the point 

cloud data, correspond to the events in 3D space. To provide the best possible representation of the 

extracted information and support the decision-making process, suitable visualisations should be created. In 

this paper, visualisations have been tested in three mediums: on computer screens for quick result 

evaluation, in virtual reality (VR) environment for offsite immersive visualisation, and in augmented reality 

environment (AR) for onsite comparative visualisation. All the figures discussed in this section are captured 

from 3D interactive visualisations. This allows the user to change the orientation and scale of the visual 

output to aid in the interpretation of the results. 

2.4.1 Point cloud visualisation for rockbolt comparison 

Figure 5 represents the change in rockbolt length. The cones in red represent convergence while the cones 

in blue represent divergence. The direction of the cone is aligned with the direction of the rockbolt in the 

latest scan. It should be noted that the orientation of the blue cone is opposite to that of the red cones 

indicating opposite direction (2D projection loses the pose/transformation information). The cones have 

been scaled 300% since the small difference in rockbolt length is very small as compared to tunnel scale. 

Further, to improve the visibility, the set of cones have been scaled 105%, and this positions the cones outside 

the point cloud data. 
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Figure 5 Rockbolt length difference markers on tunnel surface 

2.4.2 Point cloud visualisation for spatial error 

Figure  shows the computed mean surface error between the two scans. The computation of difference of 

mean of surface distribution is discussed in the previous section. The computed value is represented as 

spheres positioned at the location of computation, and the radius of the sphere is the difference of means. 

The red spheres represent convergence while the blue spheres represent divergence. The sphere radii have 

been scaled 300% for visualisation. 

 

Figure 6 Computed registration error over the surface of the tunnel shown as low density point cloud 

2.4.3 Neighbourhood visualisation with mesh model 

In addition to visualisation of rockbolt length difference within the point cloud, the length difference is also 

visualised on the surface mesh model, as seen in Figure 4 for the mesh based tunnel representation and 

Figure 7 which shows a close-up with tunnel mesh and rockbolt length difference represented as a cone.  

The structure of the mesh is generated using the position of the rockbolts on the tunnel surface.  

Higher density mesh representation is possible by using more tunnel surface points. The advantage of this 

method is that the mesh model requires small storage space. The point cloud based model requires about 

500 MB of storage space, whereas the mesh-based model requires about 100 KB. Additionally, the 

mesh-based model can be visualised with many 3D visualisation software systems as well as in web browsers. 

Mesh-based visualisations are suitable for long-term storage, requiring less storage while containing most of 

the required information. 
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Figure 7 Rockbolt difference on surface mesh model 

2.4.4 Point cloud visualisation with virtual and augmented reality 

A VR-based environment allows the user to load the point cloud data where the detected rockbolts are 

highlighted in red. This interface allows the user to visualise the condition with high resolution with scaling 

and orientation is under the user’s control, as seen in Figure 8. This kind of visualisation can be useful for 

offsite inspection with overlays showing the results of computation.  

An AR environment can load the same marked point cloud and will allow it to overlap with a digital image of 

the real-world location to allow comparison. This is suitable for on-site inspection when the results of 

computation can be overlayed on to the physical structures. 

 

Figure 8 Tunnel point cloud data with highlighted rockbolts in virtual reality environment 
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3 Conclusion 

This paper presents a methodology for extraction of rockbolt information from point cloud data representing 

underground drifts. Rockbolt information such as rockbolt protruding length, the position on the surface, 

angle to the surface, etc. are extracted. The extracted information is used to compare the rockbolt condition 

over time. Also, a method for quantification of registration error between point clouds is presented and this 

information is used to evaluate the deformation in unsupported areas between the rockbolts. Finally, 3D 

interactive visualisations are created to be used by the mining engineers as a decision support tool. 

The discussed workflow utilises available data sets such as the point cloud data, surveying information, 

blasting, microseismic event time, and locations, and applies point cloud processing techniques to add value 

to already available methods. The data processing workflow is developed in Python programming language 

with open-source libraries. The data processing workflow has been developed as an end-to-end automated 

process and does not require any user intervention. The end-to-end processing of a point cloud (~ 13 million 

points) to extract rockbolt information requires less than 20 minutes of computation time on a normal laptop. 

Subsequent processing and visualisations require less than 1 minute each. The developed algorithms can 

scale very efficiently to use parallel computation. 

The following conclusions were drawn from this work: 

1. Point cloud data may have variability in term of density and quality. Hence, evaluation of point 

cloud data and its quantification is required to perform comparison between point cloud data sets. 

2. Rockbolt representation with two points, i.e. the surface and tip point, are an efficient and effective 

representation. This representation has been used to extract a wealth of information like (but not 

limited to) the protruding length of the rockbolt, angle between the rockbolt and tunnel surface, 

and the changes to the inter-rockbolt neighbourhood. While performing comparison of point 

clouds, the two-point rockbolt representation helps in determining the rockbolt counterparts, 

computing of protruding length difference, and change in orientation by comparison of angle. 

3. Point cloud data based monitoring provides information for all the surfaces and assets in the tunnel 

including the tunnel surface, ground support, pipes, cables, and equipment. Automation of 

monitoring based on point cloud data allows the engineers to focus on the regions of interest based 

on experience or based on automated monitoring. 

4. Visualisation of comparison of registration error over the tunnel surface and difference in rockbolt 

lengths can be seen as a band spread over the tunnel surface. This provides a visual guide for 

condition monitoring of ground support and in turn guides the need for rehabilitation in the marked 

areas. However, 2D projection of 3D structures can result in a loss of information and can be 

partially compensated for by using interactive visualisation. VR-based and AR-based visualisation 

supports depth perception in addition to control over orientation and scale. Use of VR and AR for 

offsite or on-site inspection and monitoring can improve the monitoring process in terms of time, 

accuracy, and overall safety.  

5. Since post-processing exports the rockbolt information, an incremental database of rockbolts (date 

of scan and rockbolt information) can be created through successive scans. This will incorporate 

the rehabilitation information into rockbolt condition monitoring and streamline integration with 

other data sources.  

6. Rockbolt movement along its length is one indicator of loss of function, which can be determined 

from the discussed point cloud processing workflow. However, inclusion of other features is 

required to develop trigger action response plans. These include, but not limited to, rockbolt type 

yielding/non-yielding, structural model, and numerical model. 
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3.1 Limitations  

Limitations within this work are in the form of failure in detection of rockbolts that have a short length on 

the surface. This occurs since one of the rockbolt evaluation factors discards any cluster having height less 

than a set threshold (< 0.03 m). This is a recurring issue reported by other researchers, hence a methodology 

for detection of short rockbolts on tunnel surface can be explored. 

Detection of rockbolts depends on its surface properties. When the rockbolts are rusted, the number of 

points detected on their surface is reduced. Reduced number of points on the rockbolt decreases the 

accuracy during protruding length detection. As can be seen in Figure 8, the surface markings are clearly 

visible. Painting the rockbolts with similar paint (visible region, painted off-white) before or during the 

installation can increase their visibility in point cloud. Use of different means of colouring the points can also 

be helpful, such as using the reflectance to improve point cloud data quality. 

Registration of point cloud data sets using the extracted rockbolt positions can reduce registration error. 

Standard registration methods relying on large number of points and features are not able to reduce 

registration error. Registration methods capable of performing registration with small number of points and 

able to utilise orientation information can be explored to reduce this error.  

3.2 Future work 

Each process of extraction of rockbolts information, comparison of rockbolts, computation of protruding 

length difference and deformation, and finally, the registration error, have been developed as individual 

modules. The processing can be scaled horizontally through use of cloud computing to reduce the required 

computation time and to deal with larger amounts of data. 

The discussed methodology provides a data-driven technique to perform condition monitoring of the ground 

support while utilising information from other data sources. Extensive knowledge is available based on 

material, structural properties and physics-based modelling such as finite element methods. However, this 

information is mostly available within the software used within the organisations. Additionally, knowledge 

of mining engineers and surveyors about the site is a valuable source for assessing the site. One of the 

approaches towards integration of multi-domain, multi-source data, and information is through creations of 

digital twins. A hybrid digital twin supports integration of data sources and physics-based models. This can 

lead to improved results as compared to when any of the methods is used alone.  
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