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Abstract 

This paper presents a comprehensive study on applying machine learning (ML) techniques to discriminate 

seismic events in deep underground mining from blast and noise records using data collected from the Vivien 

gold mine in Western Australia. The dataset/catalogue comprises parameters derived from signals recorded by 

an ESG microseismic monitoring system, encompassing various parameters such as magnitude, seismic 

moment, total radiated energy and more, totalling 33,298 records. A rigorous statistical analysis was conducted 

to address potential multicollinearity issues and identify key input variables. Additionally, the local outlier factor 

(LOF) method was utilised to remove anomalies, ensuring homogeneity in the dataset for further analysis. 

The synthetic minority oversampling technique (SMOTE) was then applied to address imbalanced datasets, 

particularly in classifying seismic record types as seismic events, blasts or noise attributed to rockfall. Eight 

robust ML algorithms were employed to develop classifiers for predicting record class types. The performance 

of each model was evaluated using statistical indices, ultimately identifying random forest (RF) as the most 

accurate method for distinguishing between different record types. Furthermore, a user-friendly graphical user 

interface (GUI) was also developed to facilitate data analysis based on the proposed RF model, enhancing the 

interpretation of microseismic monitoring results in practical applications. This study underscores the efficacy of 

ML approaches in seismic event discrimination to ensure the seismic dataset is clean and reliable for use in 

geotechnical assessments of seismic hazards and seismic characteristics at the mine.   
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1 Introduction  

Deep underground mining is usually accompanied by seismic events, especially in hard rock mediums, with 

the potential to result in casualties, infrastructure damage and significant operational costs (Potvin 

& Wesseloo 2013). Therefore tracking fracture initiation and propagation induced by stress concentration 

and redistribution with mining progress is critical to treating or controlling potential hazards like rockburst. 

This is usually conducted by microseismic monitoring technology and post-processing of signals recorded by 

geophones and/or accelerometers. However, the analysis and interpretation of seismic events waveforms 

could be complicated if other types of signals are also recorded, such as blast and noise signals (e.g. the 

signals induced by the impact of the mining vehicles on tunnel walls, electrical circuits, rockfalls, drilling and 

orepass operations), as they may produce amplitude and energy values similar to those recorded for the 
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seismic events. Inappropriate event labelling can result in identifying fictitious high-stress zones and diverting 

resources into managing those perceived hazards. Several techniques can be utilised to assess the catalogue 

of records, including manual techniques (based on waveform spectral analysis), statistical analyses and 

machine learning (ML)-based approaches. However, as discussed by Faradonbeh et al. (2024), the former 

two techniques suffer from critical shortfalls such as being time-consuming in evaluating a large database 

generated by sensors using manual methods, implementing biased user-defined thresholds for 

discriminating the signals, not being robust enough to extract the highly complex relationship between 

variables, and being unable to provide reliable and explicit models for users. However, ML-based methods 

can significantly resolve the foregoing limitations in an intelligent manner, as reported by different 

researchers (Peng et al. 2019; Rao et al. 2021; Dong et al. 2020; Shirani Faradonbeh et al. 2023).   

Most prior studies have only focused on using one or two ML techniques for classifying seismic records based 

on a limited number of data parameters. Furthermore, in these studies the output parameter was binary 

(i.e. seismic event and blast signal) and other types of signals mentioned earlier were not considered. 

Therefore there is no comprehensive study to assess the classification capability of different ML algorithms 

in dealing with microseismic monitoring data in depth. Through a comprehensive database compiled from 

the Vivien gold mine, this study aims to propose classifiers to distinguish three types of signals (i.e. seismic 

events, blasts and noise) using eight robust ML algorithms — artificial neural network (ANN), random forest 

(RF), decision tree (DT), k-nearest neighbour (KNN), support vector machine (SVM), AdaBoost (AB), Gaussian 

Naive Bayes (GNB) and logistic regression (LR) — and compare their efficiency. In the following sections, the 

procedure of data collection and analysis is discussed in more detail. 

2 Microseismic monitoring data collection  

The database of over 30,000 records was collected over a period of five years using a commercial seismic 

monitoring system from ESG Solutions (https://www.esgsolutions.com/) installed at Vivien gold mine in 

Western Australia. The system comprised three triaxial and seven uniaxial sensors, recording the seismic 

response in the narrow vein gold mine to a depth of about 550 m. Waveform processing was performed and 

events were classified through the following three stages: 

1. automatically by the ESG system software, using settings assigned by ESG 

2. manually reviewed and adjusted by ESG personnel 

3. all waveforms larger than magnitude -1 were manually inspected and audited for quality control by 

the site geotechnical engineer, who had over 25 years of experience in waveform processing. There 

were too many smaller magnitude records to be able to audit them all and, based on the audit of 

the magnitude waveform, it is certain that some contamination existed in the seismic catalogue.  

The catalogue records are characterised by variables including local magnitude, seismic moment, total 

radiated energy, apparent stress, potency, logarithm of potency, maximum displacement at source, the Es/Ep 

energy ratio (ratio of energy associated with the S-wave and P-wave), static stress drop, source radius, S-wave 

corner frequency, apparent volume, residual and number of used sensors. The first 12 variables describe the 

seismological attributes of the seismic source. The last two parameters describe the performance aspects of 

the monitoring system: 

• ‘Location residual’ describes the extent of mismatch among the sensor waveform picks used to 

compute a location. A mismatch will always be present. Very low or very high residuals indicate 

probable errors in waveform interpretation. 

• ‘Number of sensors used’ defines how many sensors received an adequate signal from the source 

to be acceptable for the source parameter calculations.  

The dataset is considered highly accurate in terms of the classification of records into three classes: noise (n), 

seismic event (e) and blast (b). However, the database will contain contaminations, i.e. each waveform class 

will contain a small number of mislabelled records that should be in a different class. The noise class includes 
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every record that is not an event or blast. In this mine, most noise was due to the impact of blocks of rock 

falling from the backs or hanging walls of stopes and striking the lower footwall of the stopes. Minor noise 

sources arose from the placement of backfill, electrical spikes and some borehole drilling. 

3 Preprocessing of database  

Table 1 lists the descriptive statistics values of all input parameters for three different classes, however, as 

noted below, some parameters were identified as being highly correlated and were removed from further 

analysis. The dataset was examined to assess the relative frequencies of three distinct categories, as depicted 

in Figure 1. The analysis revealed that the highest proportion within the database is attributed to n instances, 

accounting for 40.5%, followed by e (31.8%) and b (27.7%) cases, respectively. 

Table 1 Descriptive statistics of all variables 

Variable (symbol) Unit  Minimum Maximum Mean Std deviation 

Local magnitude (MLOC) – –3.067 1.459 –1.018 0.748 

Seismic moment (SM)  Nm 25,096 154,170,655,000 658,495,325 2,997,429,10

9 

Total radiated energy (TRE) J 0.000† 1,981,186 9,598 49,932 

Apparent stress (AS) MPa 0.000 14.098 0.157 0.433 

Potency (P) m3 0.000 5.139 0.022 0.100 

Log potency (L) m3 –6.078 0.711 –3.004 1.122 

Maximum displacement at 

source (MDS) 

mm 0.043 7.931 0.682 0.703 

Es/Ep energy ratio (ESEP) – 0.023 257.669 11.575 10.655 

Static stress drop (SSD)  Pa 0.051 236,453,984 3,136,309 9,093,107 

Source radius (SR) m 0.375 551.971 8.060 8.019 

S-wave corner frequency 

(SWC) 

Hz 2.368 3482.490 340.748 311.836 

Apparent volume (AV) m3 0.452 917,617,444 83,260 5,070,330 

Location residual (R) m 0.000 823.636 13.191 14.536 

Number of sensors used (SU) – 4 10 7.673 1.506 
 
Zero values indicate inclusion in the dataset of entries with very small parameter values 

 

Figure 1 Percentage of microseismic data for three different classes 

27.7%
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 Noise (n)

 Seismic event (e)

 Blast signal (b)
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3.1 Correlation analysis 

The presence of multicollinearity, resulting from high correlations among the independent variables, can 

have a detrimental impact on the reliability of statistical inferences and introduce heightened complexity to 

the proposed ML-based models (Baghbani et al. 2023; Onyelowe et al. 2021a). To assess this issue, the 

Pearson correlation coefficient, R (Equation 1), was computed to gauge the relationships between all 

combinations of input variables. The results were presented as a correlation matrix in Figure 2. Using 

product-moment analysis it was determined that correlation coefficients falling within the ranges of ±0.0 to 

±0.20, ±0.21 to ±0.40, ±0.41 to ±0.60, ±0.61 to ±0.80 and ±0.81 to ±1.0 indicate no correlation, weak, 

moderate, strong and very strong correlations, respectively, between the pairs of database parameters 

(Gowida et al. 2021; Sorabi et al. 2024). 

 � = ∑ ������	�
��
�	���

�∑ ������	����
 �∑ �
��
�	����


 (1) 

where: 

n = total number of samples 

��  = values of the variable X 

��  = values of the variable Y 

�� = average value of the variable X 

�� = average value of the variable Y. 

According to Figure 2 it is evident that the majority of the input data exhibit a weak correlation. However, 

Figure 2 highlights that the correlation between MLOC-L and SM-P, with a correlation coefficient of 1, is 

notably robust. Additionally, the correlation coefficients for AS-SSD, MDS-L, and MDS-MLOC are reported as 

0.89, 0.91 and 0.91, respectively, signifying exceptionally high correlation levels based on the established 

criteria. In statistical analysis a high correlation among independent data points is undesirable as it suggests 

a lack of true independence between the variables, potentially leading to multicollinearity issues in 

regression analysis. Such high correlation can result in inflated standard errors, complicating the 

determination of the genuine relationship between variables and affecting the reliability and interpretability 

of statistical models. Therefore ensuring the independence of variables is crucial to prevent inaccuracies or 

biases in data analysis. Accordingly, for the highly correlated pairs, the following parameters were removed 

from the analysis: 

• MLOC-L – removed L since both parameters are functions of log (SM), but MLOC is less complex to 

calculate 

• SM-P – removed P since SM is the more fundamental term 

• AS-SSD –  removed SSD, which is a more model-dependent parameter 

• MDS-MLOC –  removed MDS, since MLOC is kept in preference over L 

• MDS-L – both parameters removed in managing the other correlations. 
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Figure 2 The correlation matrices for the input variables 

3.2 Anomaly detection 

In the initial data processing stage, assessing the presence of extreme anomalies within the database is 

imperative. These outliers exhibit distinct behaviour compared to the rest of the datasets, significantly 

impairing the ability of algorithms to identify the latent patterns and potentially leading to the overfitting 

problem (Shirani Faradonbeh & Taheri 2019). Various techniques, such as distance-based (e.g. local outlier 

factor [LOF]), density-based (DB), IQR and matrix factorisation methods (i.e. principal component analysis, 

PCA), were evaluated to detect outlier data. Among these approaches, DB methods yielded the most 

favourable outcomes. DB methods involve the computation of the distance between each data point and its 

nearest neighbours. Data points with significant distance from their neighbouring points are classified as 

outliers (Breunig et al. 2000). In this study, the LOF method, which falls under the category of DB methods, 

was employed. Comparative analysis of the results obtained from all the methods indicated that the LOF 

method outperformed others in accuracy and minimal removal of outlier data (see Table 2). Minimal data 

removal refers to the method’s capacity to detect outliers without unduly eliminating data points that are 

not genuine outliers. As seen in Table 2, the LOF method discarded only 10% of the data points, thereby 

preserving most of the dataset. This approach ensures the dataset’s integrity and maintains the underlying 

patterns within the data, which are vital for retaining important information that could influence the 

performance of subsequent analyses. 

Table 2 Evaluation results of outlier data detection models  

Method Data points removed Ratio (%) 

LOF 3,330 10.0 

DB 17,626 53.4 

IQR 16,009 48.1 

PCA 9,502 28.5 

1 0.52 0.37 0.54 0.52 1 0.91 -0.29 0.56 0.14 -0.38 0.095 0.029 0.32

0.52 1 0.65 0.25 1 0.52 0.79 -0.14 0.31 0.083 -0.14 0.048 -0.035 0.15

0.37 0.65 1 0.52 0.65 0.37 0.55 -0.11 0.59 -0.049 -0.047 -0.044 -0.053 0.11

0.54 0.25 0.52 1 0.25 0.54 0.52 -0.18 0.89 -0.28 0.15 -0.13 -0.08 0.19

0.52 1 0.65 0.25 1 0.52 0.79 -0.14 0.31 0.083 -0.14 0.048 -0.035 0.15

1 0.52 0.37 0.54 0.52 1 0.91 -0.29 0.56 0.14 -0.38 0.095 0.029 0.32

0.91 0.79 0.55 0.52 0.79 0.91 1 -0.27 0.56 0.033 -0.22 0.041 -0.03 0.28

-0.29 -0.14 -0.11 -0.18 -0.14 -0.29 -0.27 1 -0.24 -0.022 0.11 -0.013 -0.13 -0.037

0.56 0.31 0.59 0.89 0.31 0.56 0.56 -0.24 1 -0.26 0.12 -0.12 -0.083 0.18

0.14 0.083 -0.049 -0.28 0.083 0.14 0.033 -0.022 -0.26 1 -0.67 0.69 0.28 -0.013

-0.38 -0.14 -0.047 0.15 -0.14 -0.38 -0.22 0.11 0.12 -0.67 1 -0.27 -0.2 -0.075

0.095 0.048 -0.044 -0.13 0.048 0.095 0.041 -0.013 -0.12 0.69 -0.27 1 0.14 0.0035

0.029 -0.035 -0.053 -0.08 -0.035 0.029 -0.03 -0.13 -0.083 0.28 -0.2 0.14 1 -0.11

0.32 0.15 0.11 0.19 0.15 0.32 0.28 -0.037 0.18 -0.013 -0.075 0.0035 -0.11 1
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The conventional approach to outlier detection entails utilising statistical measures, distance metrics, density 

estimations and other indicators to quantify the deviation of a sample from the rest of the dataset. The LOF 

algorithm, an unsupervised method, calculates the local deviation in density for a given data point concerning 

its neighbourhood, thereby identifying outliers (Breunig et al. 2000). Unlike statistical methods that assume 

specific probability distributions and clustering algorithms that only make binary judgments regarding outlier 

status, the LOF algorithm offers a simpler and more intuitive solution (Aranha et al. 2023; Yin et al. 2021). 

It does not rely on distribution assumptions and quantitatively describes the degree of outliers for each 

sample. The calculation steps of the LOF algorithm are as follows: 

The circle is delineated with sample point O as the central point, and the KNN distance, denoted as dK(O), is 

employed as the radius. The region encompassed within this circle is referred to as the K-distance domain. 

The K-reachable distance from the sample point P to point O is computed according to the illustration 

presented in Figure 3, and it follows Equation 2 as stated below: 

 �������, �	 = max {����	, ���, �	} (2) 

where d (P, O) is the Euclidean distance between the sample points O and P. 

The local reachable density of the sample point P is evaluated using Equation 3: 

 "�����	 = #$�%	
∑ &�'($�%,)	*+,$�-	  (3) 

The LOF of the sample point P is computed using the following equation: 

 .�/���	 = ∑ 012$�3	
012$�-	3∈,$�-	

#5�%	   (4) 

where the absolute value of LOFk(P) approaching 1 signifies that the density of sample point P aligns with 

that of its neighbouring points, indicating that both P and its neighbours belong to the same cluster. 

The small absolute value of LOFk(P) indicates that the density of point P surpasses that of its neighbourhood 

points, suggesting that P is densely populated. Conversely, a higher absolute value of LOFk(P) implies that the 

density of point P is lower than its neighbouring points, indicating a greater likelihood of P being an outlier. 

In this study a threshold value of 1.5 was set for LOFk(P). This means that if the LOF score of data point P 

exceeds 1.5 the point is considered an outlier. This value was chosen because it is empirically found 

(Kumaravel et al. 2022; Breunig et al. 2000) to provide a good balance between sensitivity and specificity in 

outlier detection across a variety of datasets. It is not too high to miss outliers or too low to flag too many 

normal points as outliers. Finally, the LOF method identified 3,330 data points as outliers. Among these, 160 

were linked to b, 188 to e and 2,982 to n. These outliers were then removed from the original database 

(i.e. 10% of the original database removed).  

 

Figure 3 The diagram of reachable distance 

P1

distk(P1,O)=dk(O)

P2

distk(P2,O)=d(P2,O)
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3.3 Synthetic minority oversampling technique  

In this study, the synthetic minority oversampling technique (SMOTE) method was employed to produce 

synthetic data. The widely utilised SMOTE algorithm serves the purpose of enhancing imbalanced datasets 

in the realm of data analysis. Imbalanced datasets pose a challenge where one class is significantly over-

represented compared to another, resulting in biases in ML model development and their generalisability 

(Song et al. 2024; Geetha et al. 2019). To tackle this issue the SMOTE algorithm generates synthetic instances 

of the minority class by interpolating between existing instances. The process entails randomly selecting a 

minority instance and identifying its KNN. New instances are then generated by randomly selecting feature 

values from either the original instance or its KNN (see Figure 4). This procedure effectively balances the 

classes by introducing new instances into the dataset (Lui et al. 2022). While the SMOTE algorithm is typically 

employed for handling imbalanced datasets it is also possible to reverse the scenario by creating a dummy 

class and increasing its volume using this approach. Compared to alternative oversampling methods, the 

SMOTE algorithm offers several advantages. Firstly, it mitigates the risk of overfitting by avoiding the 

generation of exact replicas of existing instances. Secondly, it diminishes the likelihood of amplifying noise 

within the dataset since it generates new instances based on existing ones. Lastly, it demonstrates 

computational efficiency and can be applied to datasets with a high number of dimensions (Song et al. 2024; 

Geetha et al. 2019). 

 

Figure 4 The principle of the synthetic minority oversampling technique  

The important steps of performing the SMOTE algorithm are as follows (Chen et al. 2022): Step 1 – For each 

sample xi in the minority category, the Euclidean distance is employed as an index to calculate its proximity 

to all samples in the same class sample set. This process helps identify the KNN. Step 2 – Based on the 

imbalance ratio of the given dataset, a sampling ratio (M) is defined to determine the proportion of various 

samples in the new dataset. For each xi, a few samples are randomly selected from its KNNs, assuming that 

the chosen nearest neighbour is xm. From each randomly selected neighbour xm, a new sample is generated 

by modifying the original sample using Equation 5, where rand(0,1) represents a random number between 0 

and 1. 

 6789 = 6 + �;<��0,1	 × |6� − 6|, <BC ∈ 1,2, … , F (5) 

Step 3 – These steps are repeated M times to generate M new samples. In other words, if the minority 

category initially comprises T samples, new MT samples are generated. A balanced dataset is obtained after 

merging these new samples with the existing few original samples. Given the initial count of 12,194 instances 

in class n, the SMOTE method was employed to equalise the number of instances in classes e and b. 

Consequently the count of class e instances increased by 32% whereas the count of class b instances 

increased by 43%. 

3.4 Parameter standardisation 

Parameter standardisation is a crucial step in data preprocessing to facilitate the development of intelligent 

models. This is necessary due to input parameters with diverse ranges of values and units, which can impact 
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model training performance. Standardising these parameters plays a vital role in expediting the convergence 

of the model during training. When input features exhibit dissimilar scales or units, it can result in uneven 

learning rates across different features. This discrepancy can impede the optimisation algorithm’s ability to 

find the optimal solution efficiently and may even lead to convergence in suboptimal regions. A comparable 

scale is achieved by standardising the input parameters, enabling the optimisation algorithm to converge 

more effectively. Additionally, standardisation ensures that each feature contributes equally to the learning 

process of the model (Habib & Okayli 2024). This study implemented the Z-score method (Ali et al. 2023; 

Wang et al. 2021) to standardise the parameters. The Z-score normalisation approach, also known as the 

normalisation score, utilises the mean (μ) and standard deviation (σ) values of the given parameter x to 

transform data points so that they have μ = 0 and σ = 1. Mathematically, the Z-score of a parameter x can be 

calculated as follows: 

 G'HIJ8 = �K�L	
M  (6) 

4 Machine learning algorithms 

ML algorithms are computational models that help computers acquire knowledge and perform tasks such as 

classification, prediction or decision-making based on available data. These algorithms can be broadly 

categorised into five main types: supervised, unsupervised, semi-supervised, reinforcement and deep 

learning algorithms. Each algorithm type serves different purposes and can be applied in various domains, 

such as regression analysis, classification, clustering and image processing (Shirani Faradonbeh et al. 2019; 

Shirani Faradonbeh et al. 2023). In the present research, a comprehensive investigation was conducted using 

eight robust supervised learning algorithms: ANN, RF, DT, KNN, SVM, AB, GNB and LR. The primary objective 

was to examine the interplay between the independent and dependent variables through an intelligent 

approach. 

4.1 Artificial neural network  

ANNs are computational models inspired by the human brain’s information processing capabilities. They have 

evolved since the 1940s into a powerful tool across technological and scientific domains. An ANN’s strength lies 

in its ability to predict, classify and recognise patterns, making it indispensable for tackling intricate problems. 

The core of ANN operation is a highly interconnected system of simple processing units known as neurons, 

which can learn about complex dependencies between variables through organisation in layers. The most 

prevalent ANN architecture, the multilayer perceptron (MLP), comprises an input layer, one or more hidden 

layers and an output layer (Shakeri et al. 2022a, 2022b; Khoshalan et al. 2021). The classification prowess of 

ANNs is particularly beneficial as they empower the network to segment input data into distinct categories or 

groups. By training the ANN on labelled data, the network learns to discern patterns and make accurate 

predictions or classifications on unseen data. The success of an ANN in classification tasks is mainly due to its 

capacity to learn and generalise from training examples using an iterative learning process called 

backpropagation to minimise the difference between predicted and actual outputs. Factors such as the 

network’s architecture, including the number of layers and neurons, the quality and quantity of training data, 

and the choice of activation functions and optimisation algorithms, significantly influence the network’s 

performance. Despite the challenges, an ANN’s remarkable classification abilities, spanning various fields, 

indicate its power and versatility (Onyelowe & Shakeri 2021; Onyelowe et al. 2021b). 

4.2 Random forest  

The RF algorithm is widely used in ML for classification and regression tasks. It operates by constructing 

multiple DTs, known as classification and regression trees (CART), through a process of bootstrap sampling 

and aggregation. In regression problems the input variables are split into multiple points to calculate the sum 

of square error (SSE) for predicted and actual values, with each node choosing the minimum SSE value. RF 

employs an ensemble of independent DT generated through random sampling, where new training sets are 

created from the original set using bootstrap sampling. DT are then built for each new bootstrap training set, 
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and the out-of-bag dataset is created to evaluate the performance of each DT. Random feature selection is 

performed at each step of building trees using cross-validation, helping to decorrelate the input trees and 

improve the model’s accuracy (Li et al. 2022; Matin et al. 2018). The RF algorithm is particularly effective in 

classification tasks due to its robustness in handling large feature sets and interactions among predictor 

variables. It can also deal with unstable learners, delivering excellent performance when implemented with 

high-quality and free implementations. The algorithm determines the importance of each feature in the 

dataset, aiding in model inference. By using different bootstrap samples and subsets of features to train 

individual trees, RF achieves faster training and better predictive performance by striking a favourable 

variance-bias trade-off. Overall, RF is an ensemble-based ML model with numerous DT constructed on 

diverse bootstrapped datasets. It effectively reduces variance and enhances the predictive capability of DT, 

making it a valuable tool for classification and regression tasks, particularly in civil and mining engineering 

(Zhang et al. 2019). 

4.3 Decision tree  

The DT algorithm is widely used in ML and data mining for classification and prediction tasks. It encompasses 

various subsets but two common ones are CART and chi-square automatic interaction detector (CHAID). 

CART is particularly suitable for predicting continuous variables and stands out for its white box nature and 

simple interpretability. This algorithm facilitates understanding of the relationship between input and output 

parameters, making it superior to other DT algorithms. CART is robust in handling complex samples and 

large-scale datasets without being affected. It can be applied as a CT or an RT, and the right partition for a 

database is determined using indices like the Gini criterion, entropy or the Twoing criterion. By not assuming 

variable distribution, CART’s non-parametric nature makes it versatile. During training, prevention criteria 

such as a minimum number of observations, maximum tree depth and least error values help avoid 

developing overly complex trees. Pruning the tree using a verification dataset ensures the optimal subtree is 

obtained while reducing overtraining (Yari et al. 2023; Ghasemi et al. 2020; Faradonbeh et al. 2022a). In 

classification tasks, the DT algorithm, especially CART, demonstrates its ability to classify data effectively. Its 

simplicity and interpretability make it a valuable tool for understanding the relationships between input and 

output variables. CART can efficiently classify instances into different classes or categories by partitioning the 

data based on specific indices. With the flexibility to handle complex samples and large datasets, it remains 

reliable even in challenging scenarios. Using prevention criteria during training helps avoid creating overly 

complex trees, ensuring a balanced and optimised classification model. The DT algorithm, particularly CART, 

thus proves to be a powerful and versatile technique for classification tasks in supervised learning (Pu et al. 

2018; Ghasemi et al. 2020). 

4.4 K-nearest neighbour  

The KNN algorithm is a non-parametric method that identifies K instances most closely related to an unknown 

sample within a given dataset. This algorithm is particularly effective in large datasets and limited 

dimensionality scenarios, where relative neighbour techniques emerge as efficient local procedures. These 

techniques are applicable across a spectrum of ML domains, particularly in multi-label classification, 

regression and semi-supervised learning contexts. KNN is recognised for its ease of implementation, 

practicality, and user-friendliness, exhibiting similarities with other algorithms such as ANN and RF in its 

classification and regression analysis applications. At its essence, KNN operates by pinpointing K samples 

adjacent to unknown samples in the calibration dataset, commonly using distance measures. Optimisation 

can be achieved by identifying models with congruent attributes (Khan et al. 2022; Gomah et al. 2022). 

Furthermore, KNN assigns categories to unknown samples by averaging pertinent variables and comparing 

the outcomes against those of the K known samples. The efficacy of KNN hinges heavily on the selection of 

K. One of the benefits of KNN is its simplicity in interpretation and execution. Additionally, KNN performs 

adeptly in environments with non-linear decision boundaries, making it valuable for various classification and 

regression tasks. Adjusting the value of K provides considerable adaptability in setting thresholds. Unlike 

other ML frameworks, KNN does not require a distinct training phase, thus simplifying the process of 

hyperparameter tuning (Mahmoodzadeh et al. 2021; Wang et al. 2024; Ahmad et al. 2021). 
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4.5 Support vector machine  

The SVM algorithm is a powerful and versatile supervised ML technique for classification and regression 

tasks. Unlike other methods such as ANN, SVM follows the principles of structural risk minimisation to 

minimise model error. This makes it particularly beneficial when dealing with datasets where the number of 

features exceeds the number of data points. During the training phase, SVM carefully analyses the input data 

and constructs a hyperplane that separates the data into distinct classes or regimes. This hyperplane is 

optimised by maximising the margin between the closest data points belonging to different classes. These 

crucial data points, known as support vectors, are pivotal in establishing the decision boundary. SVM is highly 

regarded for its ability to handle complex decision boundaries and efficiently process high-dimensional data. 

By finding the hyperplane that not only separates the classes but also maximises the margin, SVM achieves 

good generalisation performance, reducing the risk of overfitting. Furthermore, SVM can handle both linearly 

separable and non-linearly separable data by utilising kernel functions that transform the data into higher-

dimensional feature spaces. This allows SVM to find a hyperplane that effectively separates the classes, even 

in cases where the data is not linearly separable (Baghbani et al. 2023; Xu et al. 2022, Wang et al. 2024). 

4.6 AdaBoost algorithm   

The AB algorithm, or adaptive boosting, is an ensemble method widely used in ML that leverages DT as its 

primary classifier. The core principle behind AB is to adaptively assign weights to each instance, with higher 

weights assigned to instances that were incorrectly classified. The AB algorithm, developed by Freund 

& Schapire (1995), is the most commonly employed variant of the boosting algorithm, optimising classifier 

accuracy. This learning approach is relatively straightforward, constructing a strong classifier from a small 

number of weak classifiers that are individually efficient but lack predictive power. The objective is to 

combine these weak classifiers to enhance their overall performance. Consequently the resulting robust 

classifier can predict the class of new observations within a given dataset. AB enhances the classification 

efficacy of a simple learning algorithm by aggregating sets of weak classifiers to build a more resilient 

classifier. In boosting algorithms, the simple learning algorithm is referred to as a weak learner, which selects 

a limited yet effective set of potentially relevant features. A weak learner cannot accurately categorise the 

training data even when employing the best classification function. A series of learning challenges must be 

addressed to strengthen the weak learner. Following each learning cycle, the instances are reweighted to 

emphasise those misclassified by the preceding weak classifier. The final robust classifier then employs a 

weighted combination of the weak classifiers to determine each feature’s optimal threshold classification 

function (Ahmad et al. 2022; Pu et al. 2018). 

4.7 Gaussian Naive Bayes  

The GNB algorithm is an ML classification technique that assumes the dataset’s features adhere to a Gaussian 

distribution. This algorithm is considered a variant of the Naive Bayes classifier, which assumes independence 

among features. This assumption simplifies the computational process and often yields satisfactory results 

despite its limited applicability to real-world datasets. To classify a test observation, the algorithm calculates 

the posterior probability for each class by multiplying the likelihood of the observation given each class 

(which is assumed to follow a Gaussian distribution) by the prior probability of each class. The observation is 

then assigned to the class with the highest posterior probability. The likelihood function is determined using 

the Gaussian distribution, which characterises the probability density function of a symmetrically distributed 

random variable. One notable advantage of the GNB algorithm is its ability to handle continuous input 

variables without requiring complex transformations or scaling procedures. This property makes it 

particularly advantageous when working with datasets that exhibit a normal feature distribution. 

Furthermore, the algorithm demonstrates computational efficiency. During the training phase the algorithm 

calculates the mean and standard deviation for each feature within each class, a task that can be swiftly 

accomplished even with large datasets. During prediction, the algorithm utilises these precomputed statistics 

to calculate posterior probabilities, resulting in prompt predictions (Dong et al. 2016; Ibrahim et al. 2023; Pu 

et al. 2020). 
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4.8 Logistic regression  

LR is a supervised ML algorithm renowned for its prowess in tackling binary classification problems. It serves 

as a potent instrument for scrutinising and categorising variables of a categorical nature, finding applications 

across domains such as engineering and medicine. The crux of LR lies in the sigmoid function, which imparts 

a transformative effect on linear regression, morphing it into the logit function and thereby rendering it 

amenable to dealing with categorical outcomes. LR not only furnishes an assessment of the significance of 

predictors but also furnishes cues about the direction of the relationship between predictors and the 

outcome. This attribute bestows upon it an informative output that engenders sound decision-making. LR is 

harnessed to estimate the likelihood of an event materialising, thereby streamlining data classification into 

discrete classes. The regression coefficients, gleaned via maximum likelihood estimation, yield valuable 

insights into the magnitude and direction of the link between explanatory variables and the categorical 

outcome. This conveys an enhanced comprehension of the underlying determinants that govern the 

classification decision. Consequently, LR models assume a position of eminence when scrutinising and 

categorising categorical variables. Their versatility and efficacy have rendered them a favoured choice across 

various domains (Xu et al. 2023; Dong et al. 2016; Faradonbeh et al. 2022b). 

5 Metrics for performance evaluation 

Classification metrics serve as a yardstick for evaluating the performance of classification algorithms. 

This study employed various metrics to compare and assess the adjusted unsupervised ML algorithm. 

Accuracy (ACC) is a metric that considers both normal and faulty samples. The classification ACC assessment 

in isolation may lead to misinterpretations, particularly in unevenly distributed observations across different 

classes or in scenarios involving more than two classes. Employing a confusion matrix proves to be a valuable 

instrument in comprehending the precise performance of a classification model and identifying the specific 

types of errors it encounters. Comprised of true positive (TP), true negative (TN), false positive (FP) and false 

negative (FN) components, the confusion matrix provides a structured overview of classification outcomes. 

ACC can be computed using Equation 7, where ntotal signifies the total number of samples (Faradonbeh et al. 

2024; Zhou et al. 2022; Ma et al. 2024). 

 NOO = P%QP#
7R*RS0  (7) 

An illustration of a three-class classification scenario depicted in Figure 5 showcases how the confusion matrix 

visually represents the correct classification of microseismic records through its diagonal elements, while any 

misclassifications are evident in the off-diagonal elements. An optimal classifier would exhibit solely diagonal 

elements, resulting in a perfect overall accuracy score of 1. The integration of classification metrics, including 

the analysis of confusion matrices, assumes a pivotal role in evaluating the effectiveness and dependability 

of ML algorithms (Faradonbeh et al. 2024; Zhou et al. 2022; Ma et al. 2024). 

Confusion matrix 
Predicted class 

1st class 2nd class 3rd class 

R
e

a
l 

cl
a

ss
 

1st class X11 X12 X13 

2nd class X21 X22 X23 

3rd class X31 X32 X33 

Figure 5 The configuration of a standard confusion matrix for a three-class classification scenario 

Precision (PR) quantifies the TP value relative to the FP. Equation (8) can be utilised to compute PR, with FP 

representing the count of FPs. 

 �T = P%
P%QU% (8) 
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Recall (REC) indicates the proportion of anomalous data accurately identified among all anomalies. 

In industrial applications, REC holds significant importance as FNS carry more severe consequences than false 

alarms or FPs. Equation 9 calculates REC, with FN representing the count of FNs. 

 TVO = P%
P%QU# (9) 

The F1 score is a harmonic mean between REC and PR, and it can be approximated using Equation 10. Utilising 

F1 as a metric also helps alleviate the impact of an imbalanced database, where the positive data is 

considerably smaller than the negative data. Accuracy exhibits limited sensitivity in temporal classification 

scenarios. 

 /1 = W�%X×XYZ	
%XQXYZ  (10) 

Area under the receiver operating characteristic (AUC-ROC) illustrates the relationship between the false 

positive rate (FPR) and the true positive rate (TPR). A greater AUC indicates a better classifier model, with a 

perfect classifier represented by an AUC of 1. Generally, higher metric values indicate better predictive 

performance, a principle that applies across all chosen metrics.   

6 Discussion and results 

As delineated previously, this research employed a variety of robust classifier ML algorithms to construct 

models distinguishing between different classes of microseismic recordings. The efficacy of ML algorithms in 

discerning intricate associations between input and output variables can be bolstered through the provision 

of ample training data and the utilisation of appropriate training algorithms. 70% of the dataset was allocated 

for model training purposes, while the remaining unseen data was reserved for validating the trained model. 

In this investigation, the confusion matrix and associated performance metrics were utilised to assess the 

efficacy of the proposed multi-class classifiers in categorising catalogue records. The settings that lead to the 

highest accuracy in predicting microseismic event types are listed in Table 3. Furthermore, the dataset 

partitioning technique employed in this investigation involved utilising the random division approach. While 

this methodology may not fully ensure the statistical coherence between the training and test sets, it upholds 

the impartiality of the experimental outcomes. It is worth mentioning that an identical training set was 

utilised for model development to enhance the comparative analysis of all hybrid models. 

Table 3 The optimum values of controlling parameters for the developed classifiers (continued next page) 

Model Parameter Default value 

Decision tree max_depth 5 (none) 

  min_samples_split 10 

  min_samples_leaf 5 

  max_features sqrt' 

Random Forest n_estimators 100 

  max_depth 10 (none) 

  min_samples_split 5 

  min_samples_leaf 2 

  max_features sqrt' 

AdaBoost n_estimators 50 

  learning_rate 1 

Support vector machine  Kernel function Radial basic function 
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Model Parameter Default value 

  ε  0.1 

  tol  0.001 

  γ  1/number of features 

K-nearest neighbours  n_neighbours 5 

  weights Uniform 

  algorithm Automatic 

Logistic regression penalty l2 

  C 1 

  solver lbfgs 

MLP classifier hidden_layer_sizes (100) 

  activation Relu 

  solver Adam 

  alpha 0.0001 

Gaussian Naive Bayes priors None 

 var smoothing 1e-9 

The confusion matrices and overall accuracy of the developed multi-class classifiers during both the training 

and testing phases are depicted in Table 4. According to this table, all the classification techniques employed 

in this research exhibit high precision in forecasting signal types recorded by the microseismic monitoring 

system, consistently achieving accuracies exceeding 90% during both the training and testing phases. 

A detailed analysis of Table 4 and Figure 6 shows that the SVM, DT and LR models exhibit nearly identical 

prediction accuracies for the training data, with 95.88, 95.18, and 95.04 values, respectively. These values 

are slightly higher than AB’s accuracy of 94.86, with a marginal difference of about 1%. Similarly, the KNN 

and MLP models show comparable accuracies of 96.38 and 96.06 for the training data, slightly lower than 

the RF model’s accuracy of 97.25 by approximately 1%. In contrast, the test data results indicate that the 

MLP, RF, SVM and LR models have prediction accuracies of 95.61, 95.51, 95.46 and 95.02, respectively, 

surpassing the DT, AB, and KNN models, which achieved 94.60, 94.59 and 92.94, respectively. Notably, the 

GNB model yielded the lowest prediction accuracy for seismic events, with values of 90.79 and 90.82 for the 

training and testing data, respectively.  

The findings also indicate that most of the intelligent models, except for the GNB model, predicted seismic 

events with a variance of about 1% in accuracy between the train and test stages. Among these, the RF and 

MLP models demonstrated relatively higher accuracies. Specifically, the RF model accurately predicted 

21,456 out of 22,062 training data cases and 9,031 out of 9,456 testing data cases, while the MLP model 

correctly predicted 21,193 training data cases and 9,041 testing data cases. Conversely, the GNB model 

accurately predicted 20,029 training data cases and 8,588 testing data cases, showing the weakest 

performance among the models studied. Overall, the results demonstrate that all the classification 

algorithms show high accuracy in identifying blasts. This is obvious from confusion matrices shown in Table 4, 

where the orange diagonal data represent the number of correctly predicted cases for each class, highlighting 

the models’ proficiency in predicting blasts. This can also be observed in Table 5, where the precision of each 

model in categorising the data in proper classes is listed. According to this table, the precision of all models 

in predicting the blasts is higher than in other classes. This can be related to some distinct features of blast 

records compared to other recordings, which could make their detection easier for the algorithms (some 
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algorithms like RF are particularly good at capturing the decision boundaries in the feature space when they 

are clear and strong signals).   

Table 4 The confusion matrices of machine learning classifiers for the training and testing stages 

Confusion 

matrix 

Model Predicted class Model Predicted class 

DT 
Train Test 

RF 
Train Test 

n e b n e b n e b n e b 

R
e

a
l 

cl
a

ss
 

n 7,254 71 22 3,097 48 14 n 7,286 47 14 3,117 30 6 

e 148 6,830 356 50 2,847 275 e 81 6,960 293 53 2,916 203 

b 12 455 6,914 11 114 3,000 b 4 167 7,210 8 125 2,992 

ACC (%) 95.18 94.59 ACC (%) 97.25 95.51 

Model Predicted class Model Predicted class 

AB 
Train Test 

SVM 
Train Test 

n e b n e b n e b n e b 

n 7,214 114 19 3,107 44 8 n 7,257 70 20 3,120 29 10 

e 160 67,31 443 73 2,880 219 e 121 6,831 382 51 2,923 198 

b 9 390 6,982 8 159 2,958 b 4 313 7,064 8 133 2,984 

ACC (%) 94.86 94.60 ACC (%) 95.88 95.46 

Model Predicted class Model Predicted class 

KNN 
Train Test 

LR 
Train Test 

n e b n e b n e b n e b 

n 7,268 56 23 3,115 35 9 n 7,232 76 39 3,118 30 11 

e 107 6,873 354 56 2,895 221 e 158 6,743 433 66 2,902 204 

b 6 253 7,122 6 153 2,966 b 11 377 6,993 8 152 2,965 

ACC (%) 96.38 94.92 ACC (%) 95.04 95.02 

Model Predicted class Model Predicted class 

GNB 
Train Test 

MLP 
Train Test 

n e b n e b n e b n e b 

n 6,,687 515 145 2,895 216 48 n 7,262 67 18 3,117 37 5 

e 92 6,168 1074 29 2,664 479 e 114 6,853 367 55 2,950 167 

b 3 204 7,174 1 95 3029 b 5 298 7,078 6 145 2,974 

ACC (%) 90.79 90.82 ACC (%) 96.06 95.61 
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Figure 6 Classification accuracy for all machine learning models 

Table 5 The prediction accuracy of class type for different algorithms at the testing stage  

Model b e n 

DT 0.9807 0.9462 0.9121 

RF 0.9808 0.9495 0.9347 

AB 0.9746 0.9342 0.9287 

SVM 0.9814 0.9475 0.9348 

KNN 0.9805 0.9390 0.9280 

LR 0.9768 0.9410 0.9324 

GNB 0.9897 0.8955 0.8518 

MLP 0.9808 0.9419 0.9453 

Additional examination of the precision, recall and F1 score metrics for each category in the training and 

testing phases is outlined in Tables 6 and 7. According to the study conducted by Pu et al. (2020), classification 

accuracy is frequently used as a performance metric although it may not always be the most suitable 

measure. In scenarios where users are interested in specific questions, such as the number of identified 

blasting events out of all events or the accuracy in identifying true microseismic events, classification 

accuracy alone may not suffice. Therefore the study introduced precision and recall as alternative indicators 

to assess performance. Furthermore, the researchers employed the F1 score, a metric that combines both 

recall and precision, to evaluate the effectiveness of the classification algorithms. A higher F1 score indicates 

a more accurate classification model. 

DT RF AB SVM KNN LR GNB MLP

Series1 0.9518 0.9725 0.9486 0.9588 0.9638 0.9504 0.9079 0.9606

0.86
0.88
0.90
0.92
0.94
0.96
0.98

A
c
c
u
ra

c
y

Classifier Models

Train

DT RF AB SVM KNN LR GNB MLP

Series1 0.9459 0.9561 0.9460 0.9546 0.9492 0.9502 0.9082 0.9551

0.88

0.90

0.92

0.94

0.96

A
c
c
u
ra

c
y

Classifier Models

Test
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Table 6 Evaluation results of the developed models in the training stage 

Method 
Train 

ACC Score PR Score REC Score F1 Score 

DT 0.9518 4 0.9517 4 0.9518 4 0.9517 4 

RF 0.9725 8 0.9726 8 0.9725 8 0.9725 8 

AB 0.9486 2 0.9485 2 0.9486 2 0.9485 2 

SVM 0.9588 5 0.9587 5 0.9588 5 0.9587 5 

KNN 0.9638 7 0.9638 7 0.9638 7 0.9637 7 

LR 0.9504 3 0.9503 3 0.9504 3 0.9503 3 

GNB 0.9079 1 0.9120 1 0.9079 1 0.9079 1 

MLP 0.9606 6 0.9606 6 0.9606 6 0.9606 6 

Table 7 Evaluation results of the developed models in the testing stage and final score 

Method 

Test   

Total Final 
ACC Score PR Score REC Score F1 Score   

DT 0.9459 2 0.9464 3 0.9459 2 0.9457 2  25 6 

RF 0.9551 7 0.9551 7 0.9551 7 0.9549 7  60 1 

AB 0.9460 3 0.9459 2 0.9460 3 0.9458 3  19 7 

SVM 0.9546 6 0.9546 6 0.9546 6 0.9545 6  44 3 

KNN 0.9492 4 0.9492 4 0.9492 4 0.9491 4  44 4 

LR 0.9502 5 0.9501 5 0.9502 5 0.9501 5  32 5 

GNB 0.9082 1 0.9125 1 0.9082 1 0.9083 1  8 8 

MLP 0.9561 8 0.9560 8 0.9561 8 0.9561 8   56 2 

In order to identify the most effective ML model for classification during both the training and testing phases, 

the study implemented a scoring analysis. Each model was assigned a score from 1 to 8 according to how 

well it performed across various indicators compared to other models. Models were then ranked based on 

their performance metrics, as outlined in Tables 6 and 7 and Figure 7. The overall score for each model was 

determined by aggregating its training and testing scores. The RF model emerged as the top performer, 

demonstrating its proficiency in capturing intricate relationships within the data. Additionally, the study 

revealed that the MLP, SVM, KNN, LR, DT and AB methods followed RF in the rankings. Conversely, the GNB 

method ranked lowest in the overall performance evaluation. 
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Figure 7 Comparison of precision, recall and F1 scores for all developed models 

In addition to utilising a confusion matrix, the ROC curve is a valuable tool for illustrating the level of 

agreement between predicted and actual values. ROC curve is obtained by plotting the TPR against the FPR. 

The AUC equal to 0.5 refers to the random classification by the model, while AUC = 1 refers to the perfect 

classification. The analysis of the ROC curves depicted in Figure 8 reveals that all models excelled in predicting 

the blast (b) with AUC = 1, which is consistent with the confusion matrix results shown in Table 4. In general, 

RF and MLP models outperformed SVM, LR, DT, KNN, GNB and AB models by AUC values of 1, 0.99 and 0.99 

for classes b, e and n, respectively. This could be related to the higher capability of the RF and MLP algorithms 

in inferring the latent complex relationships between parameters for this database. On the other hand, the 

correct prediction of the noise (n) was more difficult, probably because some noise parameter values 

overlapped more with event parameter values.  This correlates with the similar difficulty reported by the 

geotechnical engineer undertaking regular audits of waveforms on the mine site.  
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Figure 8 ROC graph for all machine learning models. (a) Decision tree; (b) Random Forest; (c) AdaBoost; 

(d) Single vector machine; (e) k-nearest neighbour; (f) Logistic regression; (g) Gaussian Naaive 

Bayes; (h) Multilayer perceptron 

7 User interface development 

To enhance the usability and accessibility of the intelligent best model formulated in this study for 

researchers and engineers, a graphical user interface (GUI) was developed, as seen in Figure 9. This GUI 

empowers users to effortlessly predict the class types recorded by the microseismic monitoring system by 

inserting values for inputs listed in Table 1. As obserrved in the above sections, the  RF method demonstrated 

superior accuracy in distinguishing between recorded class types among all the intelligent methods employed 

in this study. Therefore the GUI described in this section is based on the RF model. It is critical to mention 

that this GUI has been established based on the data range (minimum-maximum range) specified in Table 1, 

and any user input data must adhere to this range. In future an expanded database and further research 

endeavours will enable the optimisation and enhancement of the aforementioned GUI system. Users can 

access the GUI interface through the following link: https://github.com/Faradonbeh/Microseismic-

Monitoring/releases/tag/v1.0.0. 
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Figure 9 Graphical user interface of the developed random forest-based model 

8 Conclusion 

This paper has demonstrated the effectiveness of ML techniques in discriminating seismic event classes in 

deep underground mining using data collected from a gold mine in Western Australia. Potential 

multicollinearity issues were addressed through a rigorous statistical analysis, and key input variables were 

identified. The LOF method was utilised to remove anomalies, ensuring homogeneity in the dataset. The 

SMOTE method was employed to address imbalanced datasets, particularly in classifying seismic event types. 

Eight ML algorithms were used to develop classifiers. It was found that SVM, DT and LR models exhibited 

similar prediction accuracies for the training data with accuracy values of 95.88%, 95.18% and 95.04%, 

respectively, which were slightly higher than the AB model’s accuracy (94.86%). KNN and MLP models also 

showed accuracy values of 96.38% and 96.06%, just below RF’s 97.25%. For the testing data, MLP, RF, SVM 

and LR achieved accuracies of 95.61%, 95.51%, 95.46% and 95.02%, outperforming DT, AB and KNN, which 

scored 94.60%, 94.59% and 92.94%, respectively. The GNB model revealed the lowest prediction accuracy 

for both training (90.79%) and testing data (90.82%). Overall, the RF and MLP models demonstrated the  

highest modelling performance, successfully predicting 21,456 and 21,193 training cases and 9,031 and 9,041 

test cases, respectively. In contrast, the GNB model showed the weakest performance by predicting 20,029 

training cases and 8,588 testing cases accurately. Following RF and MLP, the SVM, KNN, LR, DT and AB models 

showed strong performance, whereas GNB ranked the lowest. These results, supported by confusion 

matrices and precision criteria, highlight that all tested classification algorithms show high accuracy in 

identifying the blast type.  

Furthermore, the ROC curve analysis (Figure 8) showed that all models performed well in predicting the blasts 

(b), consistent with the confusion matrix results (Table 4). Correct prediction of the noise (n) was more 

difficult, probably because some noise parameter values overlapped more with event parameter values.  

However, the RF and MLP models exhibited higher AUC values for all three signal classes (i.e. b, e and n 

classes) compared to other ML models, demonstrating the higher capability of these techniques in 

distinguishing different types of recordings. The study also developed a user-friendly GUI based on the 
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proposed RF model, enhancing the interpretation of microseismic monitoring results in practical applications. 

Overall, this research underscores the efficacy of ML approaches in seismic event discrimination, offering 

valuable insights for improved monitoring and safety measures in deep underground mining operations. 

The findings provide a solid foundation for further advancements in utilising ML to enhance the safety and 

efficiency of mining operations. Future endeavours could achieve higher accuracy and more generalised 

models by implementing parallel processing techniques to handle large datasets, performing more 

comprehensive hyperparameter tuning and including more case studies. 
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