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Abstract 

The field of machine learning (ML) has had a significant impact on, and adoption in, many fields of science 

and engineering, yet in mining is still not very well developed, with many publications exploring scopes of 

application and potential areas of integration. 

As mining reaches deeper environments where most traditional methods of stability analysis have yet to be 

calibrated, there are good opportunities to apply ML methods to diverse types of, for example, failure 

phenomena. Still there is a necessity to properly account for adequate data inclusion and problem definition 

to apply these kinds of analysis, which is why data representation and availability with regards to a particular 

problem are crucial 

In this paper a case study of the application of data extraction and the ML modelling process applied to rock 

mass failure phenomena taking place in an underground cave mine is presented as an illustrative example of 

the practical application of ML methods of analysis in mining. 

The results show that ML methods have high potential in mining applications when coupled with careful 

consideration of input variables and the correct choice of ML approaches. The fundamentals and practical 

aspects are outlined such that the methodology of the case study is generalisable to different kinds of 

geomechanical problems. 
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1 Introduction 

While machine learning (ML) has had a significant adoption in many fields of science and engineering, its 

introduction in applications for the mining industry is still in the early stages. In particular there are recent 

developments which have been able to produce practical applications in many aspects of the mining cycle, 

in areas such as mine planning optimisation (Chimunhu et al. 2022), drilling performance evaluation (Heydari 

et al. 2024) and modelling of rockburst events (Wojtecki et al. 2022). 

The potential for ML applications in mining is vast, but the field of geomechanics is of special interest since 

the industry currently moves towards a general landscape of underground operations taking place at greater 

depths. With caving operations being one of the main strategies for these purposes, significant engineering 

challenges in terms of mine design and stability emerge since there are several known critical aspects that 

these methods are required to control. 

In this context, some of the major cave mining operational hazards include rockbursts, inrush, airblast events 

and collapses (Flores & Catalan 2019). Among these hazards the most common are rockbursts and 

geomechanical collapse. These phenomena severely affect mine stability and have a complex nature, and 

their underlying mechanisms have not been thoroughly identified. 
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It is at this point where the high amount of data that is now possible to collect can be integrated in a 

framework that facilitates the application of modern ML methods to exploit their predictive capabilities 

regarding observable emergent phenomena or as a component in monitoring tools. For the case of the 

challenges that cave mining involves, the availability of these methods is an opportunity to tackle those 

severe potential hazards and make them the object of modelling in order to understand and control their 

development. 

As successful applications continue to emerge it becomes more apparent that there are opportunities for 

incorporating ML models, in conjunction with conventional rock mechanics methodologies, to increase 

reliability of the prediction of potential hazards while advancing understanding of the underlying physical 

phenomena (Morgenroth et al. 2019), which can ultimately lead to better design, operational control and 

risk management. 

Critical aspects of the application of ML methods are the availability and integration of different types of data 

to adequately represent a particular problem. This phase, in the early stages of the definition of the analysis, 

will condition how the information is considered and categorised for its adequate representation.  

This paper presents a case study of an ML modelling approach for the pillar collapse phenomenon in a caving 

environment, where an automated pre-processing step for capturing geospatial information was developed 

to adequately represent the information that ML algorithms need in order to perform their modelling steps. 

The results of the models are displayed, showing that the representation of the variables was sufficient for 

the ML methods to detect regularity and properly represent the expression of the phenomena though the 

information they were able to capture. 

This procedure can be used as a framework to understand the general implementation of this type of 

methodology for its application to many different geomechanical-related phenomena. 

2 Pillar stability aspects 

Generally, pillar stability is assessed via empirical approaches derived from collections of field observations 

or numerical modelling methods (Zhou et al. 2015), with the latter being the main strategy for modelling the 

behaviour of underground structures providing convenient alternatives for purposes of design and analysis 

(Sinha & Walton 2019). Although numerical modelling is a highly advanced tool with capacity to simulate 

complex phenomena, it has underlying assumptions such as the rock mass being a material that experiences 

continuity in its deformations which is hardly the case for heterogenous bodies such as rock masses 

(Sherizadeh & Kulatilake 2016). 

Given the nature of caving dynamics and the changes it induces over time on the rock mass, the 

aforementioned methods may not necessarily be sufficient to capture the complexity of this mode of failure 

since it does not appear to respond coherently to concepts such as stress to strength ratios and homogeneous 

behaviour. Along these lines, worldwide expert criteria (Beard & Brannon 2018; Ferguson et al. 2018) states 

that the management of major instabilities is of utmost importance and has devised a series of operational 

strategies, considerations and design principles that aim to mitigate geotechnical hazards, including 

collapses, and ensure the safety and stability of cave mining operations. 

ML techniques and certain ML model architectures have the advantage of being able to work with various 

types of data and identify complex non-linear interactions between input variables that belong to different 

conceptual domains. This makes it possible to include a set of baseline static parameters such as geological 

conditions, and couple them with historical operational factors to model the observed responses for the 

defined target (i.e. collapse occurrence). 

3 Collapse phenomenon in caving  

Collapses represent one of the most severe types of geomechanical instabilities in caving environments. 

They create challenging pillar stability problems where progressive deformations take place in the production 

level drifts and can completely hinder entrance to the works; compromising access to drawpoints in the 
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affected areas and generating severe losses and delays in production schedule rates, according to their 

magnitude and extent. They have been defined as a gradual failure of the rock mass where deformation 

progressively develops across drifts, leading to the full closure of the cross-sections in worst-case scenarios 

(Pardo et al. 2012). They consist of rock mass damage events associated with visible deformations in a plastic 

strain mode of failure. Such deformations can develop over time and produce significant changes in the shape 

of galleries and tunnels. 

The mechanisms leading to collapses have been studied in the literature although they are still not sufficiently 

understood (Pardo et al. 2012). Nevertheless, according to previous studies (Gomes et al. 2016; Cornejo 

& Pardo 2014; Landeros et al. 2012) some of the main contributors that have been identified are: 

• the geometry of the cavefront 

• the caving front position with regard to the pillars of the production level 

• the presence of remnant pillars in the undercut level associated with deficient blasting during 

undercutting 

• damage in the undercut level caused by increased abutment stress 

• reduction of the pillar dimensions in the undercut level 

• unfavourable global caving front geometry and the extraction angle applied that controls overall 

caveback geometry 

• geological conditions (e.g. presence of major faults perpendicular to the direction of advancement 

of the caving). 

However, the relative contribution of these factors as well as their combined interactions have not been 

previously studied in quantitative terms. 

In addition it should be considered that caving dynamics cause production level pillars to experience 

high-stress conditions that change over time. Thus overall stability issues and the risk of major geotechnical 

hazards increase when considering this non-static scenario. 

Based on such characteristics, a series of operational considerations have been developed and denoted as 

‘caving rules’. Derived from technical, operational and empirical expertise and knowledge about caving 

methods, they aim to summarise critical design aspects and operational principles to ensure the safety and 

stability of cave mines by regulating their development process at the different stages of establishment, 

initiation, propagation and breakthrough (Cuello & Newcombe 2018). 

The implementation of and compliance with these rules have a wide array of impacts on caving performance, 

ore production rates, construction costs and schedules, and mine safety and stability. 

Aspects of mine development such as sequencing, the undercutting rate, allowable lead-lags, drawbell 

opening rates and extraction rates are addressed through these rules (Beard & Brannon 2018), ultimately 

controlling the caveback geometry and growth, which are parameters that have been strongly linked to 

collapse propensity in previous studies (Landeros et al. 2012; Cornejo & Pardo 2014). 

Also, one must consider that in caving methods the stress abutment state presents the most vulnerable 

condition for production level pillars due to the extensive local loading changes. Its generation as a 

consequence of the advancement of the caving front, its possible impact over the production level and its 

management are considered in the caving rules. However, regarding the collapse phenomena, it is important 

to note that collapses can develop behind the cavefront and not necessarily only in abutment zones. This 

suggests the existence of additional factors that might not be adequately accounted for in design or operation 

rules, which is why it is crucial to study other possible relationships. 

Therefore it becomes necessary to not only investigate the relationships between collapses and factors 

covered in caving rules but also other possible driver mechanisms that might contribute to this type of 

instability. 
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4 Pillar stability analysis methods 

In mining engineering, static deterministic approaches based on empirical methods to assess the stability of 

supporting structures have been widely used. Usually pillar stability is evaluated based on safety factor (SF) 

values and requires an accurate estimation of stress (load) and strength (resistance) (Song & Yang 2018). 

Empirical methods consider the ultimate stress using survey data of the actual mining conditions to analyse 

pillar stability through the calculation of the SF. However, these methods fail to consider specific failure 

mechanisms and the material properties such as size, shape, stress conditions and the presence of fractures 

(Elmo et al. 2021). Moreover, there have been reported cases of pillars suffering failure even when having a 

SF > 1 (Zhou et al. 2015). 

A more sophisticated method of stability analysis that overcomes the limitations of empirical methods is 

numerical modelling. It constitutes powerful and robust tools that can assess rock mass behaviour and the 

performance of its structures, which supports rock engineering design while also allowing us to understand 

the processes behind observed phenomena (Jing & Hudson 2002). These methods are widely used in modern 

geotechnical analysis and in the last decade have experienced significant computational advancements as 

well as improvements in their ability to simulate the behaviour of complex dynamics, providing important 

insights for structure evaluation and design (Sinha & Walton 2019; Morgenroth et al. 2019). 

The main limitation of numerical analysis is its reliance on continuum mechanics concepts, which contrasts 

with the fact that most rock masses are heterogeneous in nature and exhibit many types of discontinuities; 

thus the modelling results might not necessarily capture the actual behaviour (Nikolić et al. 2016; Sinha 

& Walton 2019; Sherizadeh & Kulatilake 2016). While it is possible to account for this limitation by defining 

series of boundaries that create delimited volumes with specific properties, they still work under the premise 

of having the model mechanisms responding to deterministic constitutive laws of material resistance. 

Specifically, assumptions provide a framework where the aspect of stability is known as a priori, leaving aside 

other possible factors that could be related to rock mass failure such as static fatigue, strength degradation 

and time dependency (Paraskevopoulou et al. 2018). 

As it relates to the case study discussed in Section 5, certain aspects (such as the progressive degradation of 

production level pillars and collapse events that developed behind the cavefront) strongly suggest that for 

this phenomenon a strength/stress perspective does not address the full aspect of stability. In contrast with 

absolute a priori assumptions, this problem was approached under a framework that has few initial 

assumptions of possible mechanistic behaviour and aims to identify the most relevant factors that affect the 

observed outcome. 

To that effect, different types of data were collected in order to analyse their correlation with collapse events 

ranging from geological and geotechnical factors to operational elements that include time-dependent 

components and caving rules parameters. For this, a flexible ML architecture with intrinsic capacity to capture 

non-linearities and interaction effects between different types of data was employed to model the collapse 

phenomena. 

5 Machine learning modelling approach 

ML is a subfield of artificial intelligence (AI) composed of a set of methods of data analysis that can 

automatically detect patterns in data and use them in future tasks like decision-making under uncertainty or 

to predict future behaviour (Murphy 2012). With these tools it is possible to model functions that map a 

given set of inputs to an output value by using data which in turn can be used to forecast outcomes and even 

their respective probabilities.  

They can detect complex interactions between the inputs and are able to work with datasets composed of 

different features that belong to various conceptual domains while still being able to determine relationships 

between the individual input elements. When modelling an unknown process that encompasses many 

suspected variables and/or interacting agents, ML can be employed to uncover the main elements that are 
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correlated with the outcome of the modelled phenomena by having the available data drive the initial 

analysis to incrementally improve knowledge about the process.  

These advantages have given AI and ML methods traction in many scientific fields and domains of knowledge, 

leading to significant breakthroughs due to their ability to handle and model complex problems such as those 

encountered in rock mechanics (Jordan & Mitchell 2015; Lawal & Kwon 2021). 

Regarding pillar stability analysis, ML algorithms offer ways to define complex non-linear relationships 

between input parameters, numerical model behaviour and observed rock mass phenomena to subsequently 

conduct more precise sensitivity analyses of the model’s inputs to ensure the adequate rock mechanics are 

being captured (Morgenroth et al. 2019). 

In ML modelling, tree-based methods are preferred when there is a need for flexibility and high predictive 

capacity in the presence of possible interactions and non-linearities in data. They consist of non-parametric 

methods which gives them the advantage of not relying on prior statistical assumptions, they normally do 

not require previous variable selection or processing, and they are not hypersensitive to outliers and 

unbalanced data. These factors make them popular in many different research fields since they provide the 

flexibility to handle multifaceted data (Carvalho et al. 2018). 

Tree-based methods usually refer to ensembles of basic classification and regression decision tree algorithms 

(CART). These base algorithms create segmentations of the data into subsets by minimising an impurity 

function; generating splits on the data that aim to create the most homogeneous and different sets (Breiman 

2017; Hastie et al. 2009). Following this, ensemble models are built as a conglomerate of simple decision 

trees which purposely behave as weak function approximators that poorly capture the behaviour of the data 

by themselves but collectively work together to form a strong and robust function approximator. 

Tree-based ensemble learning methods consists of sampling several instances from a dataset through a 

statistical technique known as bootstrap aggregation (bagging). In this case, a full tree is built on each 

separate set of bootstrapped randomised instances, being completely independent from each other and 

forming a whole set of trees called a forest. The sampling of features from the original dataset can also be 

incorporated for the bootstrapping process, thus increasing randomness in the forest by having each tree 

randomly biased. Since the forest output is built by averaging the overall set of outputs from every single 

tree in the forest, such random biases are averaged out and potential overfitting issues are reduced (Breiman 

2001). 

Such properties make ensemble tree-based models good initial baselines with which to explore non-linear 

data interactions, and this modelling approach was selected to carry out the analysis of the case study. 

6 Case study 

The Chuquicamata mine has implemented a macro-block caving method as a continuation of the open pit 

mine to extend its life for another 40 years. This project aims recover 1,700 Mt of copper ore of 0.7% grade 

at a rate of 140,000 t per day at full production. The implemented macro-block variant considers the 

development of three levels built under the open pit shell, as depicted in Figure 1. 
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Figure 1 Designed extraction lifts for the Chuquicamata underground mine project (modified after Flores 

& Catalan 2019) 

In the early stages of extraction in the first macro-block, a series of significant events causing rock mass 

damage to the supporting pillars on the production level was registered. As the caving front advanced, the 

damage events initially developed ahead of the caving front. Once it continued advancing, they ultimately 

concentrated behind it (Vásquez et al. 2023). 

Although it is possible to consider the initial events of damage as a consequence of the abutment stress 

derived from caving dynamics, in some locations the damage appeared and/or progressed even after the 

cavefront continued to advance over the footprint. The situation continued and different degrees of damage 

and deformation in various pillars and supporting structures were registered.  

The events were investigated by mine personnel and categorised as ranging from ‘low’ to ‘high’, based on 

the observed degree of damage. Eventually a significant part of the pillars that experienced deformations 

ultimately collapsed, compromising the infrastructure and access to the drawpoints in the production level. 

Figure 2 illustrates the evolution of the observed damage. 

 

(a) (b) 

Figure 2 Evolution of observed damage in production level pillars with respect to the cavefront position. 

Red: newly damaged area at the new cavefront position. Grey: previously developed. (a) Initial 

detected damage; (b) Progression of damage events concentration behind the cavefront. Arrow 

indicates direction of cavefront advancement (black outline) 

The damage that was initially detected just ahead of the cavefront in the production level was expressed 

mainly as cracking and fracturing events that propagated through the outer shotcrete layer support installed 

on the lower portion of the sidewalls and on the upper unsupported portions of the sidewalls.  
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While it was possible to find events of damage to the roof in the affected galleries, it was only significant 

once the deformations progressed up to the point where the collapse phenomenon was already taking place; 

resulting in the roof descending due to the lack of support from the surrounding pillar structure. In contrast 

to other collapses registered in more resistant rock masses that are sealed and brittle, such as El Teniente 

mine, these cases displayed no evidence of floor heave. 

The damage tracking over time showed that most of the collapse events were mainly correlated to the 

progression of the cavefront positioning, but not all initial events of damage ultimately progressed and 

evolved into collapses. 

The final collapse distribution is presented in Figure 3. 

 

Figure 3 Final pillar collapse distribution across the footprint. Purple colour represents closure of the drifts 

due to high-scale deformation of the neighbouring affected pillars, which are marked in blue. 

Pillars suffering high-scale deformation leading to drift closure are considered collapsed (blue) 

6.1 Data collection and pre-processing 

For all the collapse events that occurred in the production level, information related to the nature and 

condition history of the pillars was collected. This comprised factors such as rock-resistance properties, local 

structural geology, and operational conditions that characterised the pillars intrinsically and over time.  

These factors were associated with the pillar centroids as analysis units in space, representing both the 

position of the pillars in the footprint and their states (stable or collapsed). 

Exploratory data analysis was carried out on the collected dataset to eliminate information redundancy that 

could hinder the performance and interpretation of the obtained results, considering the tree-based nature 

of the ML model architecture. 

The final set of descriptive features is presented in Table 1. 
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Table 1 Descriptive features 

Feature name Domain Description 

Pillar area Operational Pillar area as a plan view projection, used as a proxy for the 

total active volume of the actual pillar, assuming a constant 

height  

Abutment time Operational  Time that a pillar is subjected to an abutment stress condition 

due to cavefront positioning  

Open drawpoints Operational  Average of open drawpoints surrounding a pillar before the 

cavefront reaches its position 

T_drawbell_idle Operational  Time between drawbell opening and its incorporation into 

extraction activities under the caving line 

Column height Operational  Column height from UCL floor, averaged between right and left 

sides of a pillar 

Oversize Operational Cumulative ratio of oversize events during production stages. 

Omitted in the sequential modelling case. 

SIG Y Local 

stress/strength 

Compressive stress Y-axis component extracted from numerical 

model information 

UCS Local 

stress/strength 

Uniaxial compressive strength of pillar 

FF Local 

stress/strength 

Average mapped fracture frequency observed on rock mass 

UCS/FF ratio Local 

stress/strength 

Ratio between UCS and FF values 

Max_step Cavefront  Maximum lead-lag 

CF_curvature Cavefront  Local curvature of a smoothed projection of the cavefront in 

plan view as a measure of concavity or convexity  

It is important to note that all this information relates to instances distributed across space where one point 

of analysis is composed of several properties that characterise it. 

Furthermore, the definition of the unit of analysis conditions the way the information will be ultimately 

represented in magnitude and representativity across instances. To illustrate this concept, the alternative for 

pillar collapse representation across the footprint is presented in Figure 4. 
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                                               (a)                     (b) 

Figure 4 Alternatives for spatial representation and condition of a pillar: (a) General collapsed pillar unit; 

(b) Independent collapsed pillar components. Red: collapsed unit. Green: stable unit 

The alternative of considering each pillar unit as a whole component that can experience failure represents 

a lower resolution analysis of the problem. This type of representation suffers from not reproducing the exact 

manifestation of the failure expression. However, data integration can be simpler, as well as the subsequent 

model analysis, due to lower variability across feature values.  

The second alternative considers that while each one of the individual pillar tips can experience failure 

independently from the others, a middle portion of the pillar units is excluded from the analysis. 

This increases the potential local variability in the features magnitudes to be encoded, better represents the 

failure development and makes the ulterior analysis more detailed. 

The second alternative was selected for the case study to conduct the data representation and modelling 

steps. For this, each one of the collapsed pillar tips was encoded using a binarised response of 0 for stable 

pillars and 1 for collapsed pillars. This defines a dataset composed of a selected filtered set of inputs serving 

as descriptive factors of the local pillar conditions plus the observed collapse response. The exercise took 

place with the binarisation of the pillar condition in space, according to Figure 4b. 

In the context of information being represented through heatmaps in spatial data (such as geological data) it 

becomes necessary to transform such information into tabular data. The available data was comprised of the 

parameters presented in Table 1 in terms of their distribution across space, which included mine-operational 

parameters and geological features. To address this, a standardised processing methodology was developed 

to extract features with high fidelity. 

The approach follows these steps: 

1. Filtering – visual information from images or plans was filtered, retaining only the colours 

corresponding to categories or magnitudes. 

2. Alignment and positioning – the filtered images were adjusted to a standard resolution and 

precisely aligned with a superimposed image showing the mine’s footprint and pillar locations. 

3. Colour standardisation – the positioned images were pre-processed to standardise their colours, 

removing any remaining artifacts or defects from the initial cleaning process. This resulted in the 

final image mask. 

4. Magnitude mapping – the remaining RGB colours were mapped to specific magnitudes. Pillar tip 

shapes in space were used to extract pixel RGB values, which were then converted to corresponding 

magnitudes. 

5. Feature value calculation – by combining magnitudes and pixel counts, the mean value of a given 

property displayed in the image was calculated for each pillar tip. 
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This process is illustrated in Figure 5. 

 

Figure 5 Train and test set instances in footprint. Transparent instances compose the testing set while 

solid instances are in the training set 

6.2 Modelling process 

The original dataset was split into two distinct sets for different purposes. The first one, denoted as the 

training set, was used to make the model learn the intrinsic relationships between the input values of the 

features and the response value (i.e. the binarised pillar condition). The second set, denoted as the test set, 

was used to evaluate the final performance of the model once it had been trained by using the training data. 

This is illustrated in Figure 6. 

 

Figure 6 Train and test set instances in the footprint. Transparent instances compose the testing set while 

solid instances are in the training set. Red: collapsed unit. Green: stable unit 
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A randomised train/test split with 45% of the samples for testing is used, leaving 134 pillar tip instances as 

training instances. It is crucial to note that the spatial coordinates of the pillars (X, Y, Z positions) were not 

included in the final set of features to avoid fitting the model to specific positional information, and to instead 

make it focus on generalisable parameters of rock mass condition and operational history. 

6.3 Modelling results 

The selected tree-based architecture was fed with the tabular representation of the spatial features coupled 

with the binarised response for the pillar tip status. 

The resulting model allows for the absolute and probabilistic estimation of a collapse response in terms of 

the conditional set of features for each one of the instances. While the positional information was not fed to 

the model, it is possible to trace back the position of each one of the instances and assign the model response 

for each one, thereby reconstructing their spatial location. 

Through this method it was possible to observe the model response across the footprint, which adequately 

and sufficiently reproduces the collapse distribution. This is shown in Figure 7. 

  

(a) (b) 

Figure 7 Machine learning model results of the spatial generalisation of the collapse response: (a) Model 

results in binary output; (b) Probabilistic model results. For (a), red = collapsed (1); green = stable 

(0). For (b), the colour scale follows a transition from 0 to 100% (green to red) collapse probability 

according to the model. For both figures, non-filled polygons represent model errors at 

producing the correct output 

With the model accuracy being 85% for the testing set instances plus the spatial reconstruction, it is possible 

to say that the model generalisation was acceptable, and that the information contained in the selected 

features was enough to allow the development of the collapse phenomena to be sufficiently and adequately 

captured by the tree-based ML model. 

7 Discussion 

The usage of ML models can be an effective tool for modelling complex phenomena without necessarily 

needing a deep understanding of the inner workings of the data or the algorithms. Still, there is a need to 

incorporate adequate sets of data from which the algorithms can extract useful information. For these 

reasons it might seem convenient to use as many different types of available information as possible to 

supply them to the models, however, it is not wise to blindly include features without assessing their 

significance. 

Proper usage of ML needs to proactively address aspects such as input feature selection, interpretation 

versus complexity trade-offs and result analysis (Rudin 2019; Lawal & Kwon 2021; McGaughey 2020). 

This helps to draw conclusions by analysing model behaviour and is the reason why the data was thoroughly 

pre-processed, and the input variables carefully selected, before the modelling step. Considering the 
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sampling method, the model accuracy and the information extracted from the interpretation approach the 

coherence of the results with expert criteria hypotheses. 

The selected features shown in Table 1 contain sufficient information to correctly model the phenomena and 

confirm the validity of concepts in the caving rules as being significant parameters that can control overall 

stability in this caving scenario. This strongly validates that such design and operational parameters are 

incidental factors that affect pillar stability and collapse propensity. 

8 Conclusion 

The presented ML approach allows us to effectively incorporate selected variables from different domains to 

study their potential contribution to the collapse-type rock mass failure phenomenon, based on the 

application of a learning algorithm that weighs several hypothesised mine design elements under the scope 

of expert criteria. It becomes possible to further analyse previously suspected mine design and 

time-dependent factors that are not accounted for when employing other stability analysis methods such as 

numerical modelling or empirical formulas, and it was shown how those parameters serve as contributors to 

this type of rock mass failure. This suggests that stress analysis alone might not necessarily capture the full 

complexity of this type of rock mass failure, and judicious use of ML approaches might offer a flexible 

complementary tool to address stability analyses. 

The data-driven methodology is reproducible and fairly generalisable to other geomechanics applications 

where emergent observed behaviour has an inherently complex nature and cannot be simply explained by 

reductionist approaches or first principles mechanics. Thus training an ML algorithm with data based on a 

given set of specific features and sufficient samples that carry enough information essentially allow the 

trained ML model to be employed as a system that can estimate the potential observed in situ behaviour 

when trained correctly. 

Regarding the results obtained from the case study, the specific points are: 

• The operational and design aspects exert significant control over the development of collapses in 

the production level as the ML model was able to extract useful information to reproduce the 

spatial manifestation of the phenomena based on such data. 

• The elements that were accounted for and incorporated as features correlate highly with aspects 

about caving methods design and implementation that have been widely agreed on by experts and 

condensed in the concept of caving rules. 

• This methodology, coupled with ML model interpretation, can serve as a step in understanding how 

caving rules affect the outcome of collapses in relative and quantitative terms, and can help guide 

and improve future mine design based on the measured effects the elements have on stability 

terms. 
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