
This paper attempts to make a conclusive prediction of the time, location and magnitude of a rockburst. Through a 
process of back-analysis of previous rockbursts, the rockmass strength and energy release density required to induce 
violent failure are characterised. This information is then used to demonstrate that the conditions are right for unstable 
failure of a large crown pillar that subsequently failed violently. Detailed analysis of the variability in the calibration data is 
then used to quantify the prediction uncertainty. It is then predicted with 90% confidence that the crown-pillar will burst 
when its width is 33±21m. This represents well over half the mining life of the pillar. Even though the imminence of the 
impending violent failure can be predicted, the uncertainty as to the exact moment of failure is very large.

Rockburst Prediction Using Numerical Modelling— 
Realistic Limits for Failure Prediction Accuracy
T.D. Wiles  Mine Modelling (Pty) Limited, Australia

1 INTRODUCTION
Rockbursts pose a hazard owing to their lack of predictability. 
Research into understanding rockburst mechanics and 
implementing techniques for monitoring and prediction has 
been ongoing for over 50 years. Great strides have been made 
in control measures including ground support and ground 
conditioning. Seismic monitoring techniques have advanced 
to become very reliable, sensitive and accurate. In spite of 
immense effort, there has been little progress made in the 
prediction of rockbursting. 

The objective of this paper is to demonstrate that there is a 
good correlation between the rockmass strength and energy 
release density required to induce a rockburst. A methodology 
is then described for determining the quantitative prediction 
accuracy limits. The ultimate goal is to devise a scheme to 
predict burst prone locations and the time in the mining 
sequence at which this occurs. 

Although the basic mechanics of rockmass response has 
been well understood for some time, how this relates to 
rockbursting and energy release density needs additional 
explanation since it forms the fundamental concept used in 
making predictions.

2 THE MECHANICAL BEHAVIOUR OF ROCK
It is important to begin by discussing the yielding and 
unstable failure of a rockmass from a mechanistic point of 
view, and to show where rockbursts and numerical modelling 
fit into this picture. This is presented from a solid mechanics 
background. From this point of view it will be argued that 
knowledge of the loads (stress state) alone is insufficient to 
assess stability. The stiffness of the loading system that is 
driving the failure process also needs considering. 

A failure criterion as shown in Fig. 1 is most often used to 
describe the strength of rock under load. 

Unfortunately, the strength of rock and rockmass stability 
are not synonymous. When the stresses reach or exceed the 
strength, the rockmass does not necessarily become unstable. 
Rockmass stability depends not only on the strength/stress 
ratio but also on the type of failure and the loading system 
characteristics. It is what happens during the failure process 
that dictates stability. This is because it is the loading system 
that drives the rock through a failure process from a competent 
state to an unstable state –ultimately resulting in failure. This 
process is largely independent of the failure criterion.

As rock yields under excessive load, increasing amounts 
of damage occurs. The rock will absorb energy by cracking, 
loosening and eventually lose all ability to interlock. With 
increasing damage, at some point insufficient competency 
will be available to maintain stability with a given support 
system. This will cause failure.

In reality the relationship between elastic over-stressing 
and damage will be complicated by the loading system (e.g. 
the hangingwall/footwall) stiffness. For the same amount of 
over-stressing, a pillar in a soft loading system will undergo 
considerably more damage than one in a stiff loading system 
upon yielding.

A stiff loading system will increment the failure process in a 
controlled manner. Increasing damage will occur in sequence 
with mining. This condition can be readily monitored 
and accommodated by mine operators. By contrast, a soft 
loading system will tend to drive the failure process in an 
uncontrolled manner. Increasing damage will occur out of 
sequence with the mining. Large amounts of loosening and 
damage can occur possibly at large speeds, thereby resulting 
in unexpected and violent failures. This condition is not so 
readily monitored nor accommodated.

Knowledge of the loads alone is insufficient to assess 
stability. The stiffness of the loading system that is driving 
the failure process must also be considered. This can be 
achieved using elastic numerical modelling by simulating 
the rockmass failure. To demonstrate this, consider a pillar 
loaded by the hangingwall and footwall of a mine as shown 
in Fig. 2.
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FIG. 2 Mine Pillar

The hangingwall and footwall represent the loading system. 
The pillar represents the sample. Using an elastic numerical 
model, we can simulate the pillar failure by analysing this 
problem in two stages:

• Stage I – intact pillar;
• Stage II - with the pillar removed.

The later stage is meant to represent the pillar in a failed 
state where it has been obliterated by a rockburst.
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FIG. 3 Simulation of pillar failure

For a given mining geometry, one need only determine 
the stresses acting on the pillar (stage I), then modify these 
stresses (stage II) and observe how the loading system 
responds. The slope of the load deformation response is the 
loading system stiffness. 

While interpretation in terms of stiffness is attractive 
because it is easy to understand and direct, unfortunately it 
is not so easy to apply (Wiles, 2002). Neither the loads nor 
the displacements acting on the pillar or fault are uniform. 
Also, the stiffness depends on the direction in which you 
measure the load and deformation. This makes the definition 
of stiffness somewhat ambiguous.

A more ubiquitous, albeit more abstract approach, is to 
determine the energy density (LERD). LERD is actually 
analogous to the loading system stiffness, the former just 
being the area under the load deformation curve divided by 
the pillar volume V

 VdAdLERD /∫∫= δσ  [1]

where σ and δ represent respectively the surface stresses 
and displacements, and the integrals are taken over all 
bounding surfaces of the pillar. Components for the normal 
and two shear directions must be included to arrive at the 
total energy released from the loading system due to ‘failure’ 
of the pillar.

For use in numerical models, this expression is normally 
simplified to

 ( )( ) ( )VPPLERD IIIIII 2/∑ −+= δδ  [2]

where P represents the normal and shear surface loads, 
and the sum is taken over all elements forming the boundary 
of the pillar. 

Large loading system stiffness can be associated with low 
LERD, while soft loading systems generally result in large 
LERD values. These concepts can be used interchangeably.

Note that when calculated in this way, LERD is a local 
rockmass characteristic whose magnitude will vary from one 
place to another similar to stress. The value at any location 
will change as stopes, accesses and drifts are mined. At 
some locations the LERD will increase while at others it may 
diminish. This means that a pillar may pass in and out of 
phases of being in a burst prone state as mining progresses.

3 BACK-ANALYSIS
To demonstrate the proposed methodology, consider the 
back-analyses of a series of pillar bursts. These rockbursts 
took place during the silling out stage at three different 
levels (over 2 Km depth) of Inco’s Creighton Mine during the 
mid-1980’s (for example see Fig. 4). In all cases the failures 
were obvious as the pillars failed by bursting resulting in 
considerable displacement of material.

FIG. 4 Sill-pillar back-analysis

The back-analysis results are shown as the diamond shapes 
in Fig. 5 (Marisett, 2001 and Wiles et al., 1998).
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FIG. 5 Stress back-analysis of sill-pillar failures

To obtain each point, an elastic model was built and 
analysed using Map3D (Wiles, 2005), to determine the stress 
state at the centre of a pillar at the observed time of failure. 

From these back-analysis results we can easily determine 
a best-fit strength envelope (shown as the solid inclined line) 
using linear regression. Doing this we find the equation for 
the best-fit rockmass failure criterion is given by an intercept 
UCS of 123.6 MPa and a slope of 4.08. We can assess the 
goodness of fit and quantify the variability (section 5). From 
this simple procedure it is immediately apparent if the model 
is working or not.
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For each of the pillar failures, the LERD can also be 
calculated using the procedure described above to obtain the 
results shown in Fig. 6.
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FIG. 6 LERD back-analysis of sill-pillar failures

As above, we can easily determine a best-fit line using 
linear regression. Doing this we find the equation for the 
best-fit line is given by an intercept 0.173 MJ/m³ and a slope 
of 0.0087.

It is interesting to observe the strong dependence shown 
for LERD with confinement. Note that whereas for the stress 
back-analysis we were aiming to determine the strength 
envelope characteristic of the rockmass, here we have also 
determined the LERD envelope characteristic of the rockmass 
behaviour. We should anticipate that increased energy would 
be required for pillar failures with increasing confinement as 
illustrated by the area under the stress-strain curves depicted 
in Fig. 7.
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FIG. 7 LERD dependence on confinement

4 RELIABILITY OF PREDICTIONS
Geological materials are very non-uniform. As a consequence, 
the stress magnitude, strength and other characteristics will 
vary from point to point. Although a mean value can be 
defined, there will be uncertainty as to what local value would 
be found at any given location. Repeated measurements 
demonstrate that the likelihood of finding a given value can 
be quantified in terms of probability. 

The reliability of a failure prediction can be determined 
using the standard methodology of probability and statistical 
analysis. To apply this, quantifying the mean and variability 
of both the rockmass strength (capacity function C) and stress 
predictions (demand function D) is needed, as shown in  
Fig. 8.
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FIG. 8 Capacity versus demand

Here the vertical axis represents the likelihood that various 
stress levels will occur (i.e. the probability), and the width 
of the frequency distribution represents the variability. The 
factor of safety is defined as 

 
__
/DCSF =  [3]

These two distributions can be subtracted to determine the 
probability of failure as indicated by the hatched area in Fig. 
8 where the demand exceeds the capacity (Harr, 1987).

Obviously, if the variability of the two distributions changes 
quite different probabilities of failure with the same factor of 
safety can be obtained, as shown in Fig. 9. 
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FIG. 9 Decreased variability

Although this approach appears to be quite straight 
forward, application to real life mining problems is not so 
easy. Direct determination of the probability distributions for 
the capacity and demand functions are all but impossible. 
Reliable quantification of local variability would require 
detailed in situ sampling and measurements of mining 
induced stresses and rockmass strength. This is an unrealistic 
objective in practical mining environments. An alternative is 
to use back-analysis results to quantify the variability.

5 IN SITU PREDICTION RELIABILITY
5.1 Quantification of Reliability
Quantifying the variability of the modelling predictions from 
back-analysis results now needs consideration. This can be 
readily achieved by finding a best-fit line, then calculating 
the mean distance from each prediction to the line. 

For each back-analysis, the distance from any stress point 
to the best-fit line for a linear criterion is given by

 311 σσσ qUCS −−=∆  [4]

where σ1 and σ3 represent respectively the major and 
minor principal stresses, UCS and q represent respectively 
the rockmass unconfined compressive strength and slope of 
the best-fit line.

The standard deviation s can be written 

 ( )2/21 −∆= ∑ ns σ  [5]

where n represents the number of back-analysis points, and 
the summation is taken for all n data points. Note that (n-2) 
represents the degrees of freedom used as a divisor to ensure 
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an unbiased estimate. The best-fit line can be obtained by 
minimizing s with respect to UCS and q (i.e. linear regression) 
as shown in Table 2. 
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where 1σ 3σ and 1σ 3σ  represent mean values. UCS and q can be 
related to the cohesion Coh and friction angle ϕ as follows
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TABLE 2  Sill-pillar back-analysis

σ1 σ3 ∆σ1

216.9 16.9 +24.42
170.0 18.8 -30.22
218.9 20.4 +12.16
236.7 29.1 -5.49
227.3 24.5 +3.85
206.9 16.7 +15.24
145.1 10.6 -21.71
132.6 3.2 -4.05
146.2 2.0 +14.44
147.1 7.9 -8.70

1σ 3σ = 184.77
1σ 3σ  = 15.01

Σ(σ1σ3) = 30656.09
Σ(σ3σ3)

 = 2970.17
Σ∆σ1

2 = 2706.60

s = 18.39
UCS = 123.61
q = 4.075
Coh = 30.61
ϕ = 37.3°

For the back-analysis results shown in Fig. 5 and Table 2, 
a standard deviation s of 18.39 MPa can be calculated. It is 
usually more meaningful to express this as a coefficient of 
variation by dividing by a representative stress magnitude. 
Here, the mean value of σ1 (185 MPa) will be used giving

 %95.9/ 1 ±== σsCp  [8]

Cp is a parameter that represents the confidence we have in 
our predictive capability. 

By back-analysing observation in this way, the accuracy 
of the modelling system has been actually tested. Here, the 
uncertainty associated with the knowledge of the pre-mining 
stress state, rockmass strength and applicability of the chosen 
numerical modelling procedure has been characterized. 
Back-analysis can be viewed as a procedure for quantifying 
the reliability of the entire predictive system rather than any 
of its individual components.

5.2 Probability of Failure
If the assumption is that σ1 is normally distributed, the 
probability of failure Pf can be readily calculated by integrating 
the shaded area shown in Fig. 8 or 9

 ( )sNPf 1σ∆=  [9]

where N is a function that represents the area under the 
standardized normal curve (Table 3).

TABLE 3  S given Pf (Lipson and Sheth, 1973)

Pf (%) S

0.1 -3.1s
1 -2.33s
2.5 -1.96s
5 -1.65s
10 -1.28s
50 0
90 +1.28s
95 +1.65s
97.5 +1.96s
99 +2.33s
99.9 +3.1s

Alternatively, given a desired Pf it can be determined 
the corresponding stress level from the inverse normal 
distribution as 

 ( )fPNs 1
1

−=∆σ  [10]

This is presented graphically in Fig. 10 where confidence 
intervals corresponding to Eq. 10 are plotted.

FIG. 10 Confidence intervals

For small data sets it must be realized that the calculated 
values for the best-fit strength envelope and standard 
deviation are only uncertain estimates. The accuracy of these 
can be refined by considering more back-analysis results. 
There are techniques to incorporate this extra uncertainty 
as a function of sample size n, but these details will not be 
considered here.

In view of this, it is not recommended that too many 
significant digits of accuracy be used. This is because it is not 
likely to be able to characterize the required parameters (best-
fit line and variability) nor the applicability of the normal 
distribution to the required degree of accuracy. The fine 
details in Table 3 are only presented to illustrate how quickly 
the probability of failure changes best-fit line is moved away 
from. For example at 3s from the mean probability of failure 
an error of about one in a thousand times would occur. 

In the development of the methodology above, the 
discussion has been limited to the application of normal 
distributions. This simplicity has lead to many intuitive 
insights. If extending this to non-normal probability 
distribution was required, adopting Rosenbleuth’s (1981) 
point estimate method or Monte Carlo methods would be 
useful. This has already been demonstrated in much detail 
by Hoek (1998). 
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6 PRACTICAL APPLICATIONS OF VARIABILITY 
CONCEPTS

6.1 4300 Crown-Pillar Failure
Now that field scale strength and LERD envelopes have been 
calibrated, it is time to determine the limits to the accuracy of 
failure prediction for a crown-pillar failure.

Several years after the sill pillar failures that were back-
analysed above, the mechanized cut and fill mining had 
progressed to create a narrowing crown-pillar that eventually 
failed violently (Fig. 11). 

FIG. 11 Crown-pillar failure

Firstly, an examination of when to expect failure, and the 
anticipated nature of the failure is required. Fig. 12 shows 
the stress state predicted from elastic modelling for various 
crown-pillar widths (labelled in metres). The solid diamonds 
correspond to 8m intervals, representing two cuts each. From 
the figure it can be seen that the crown pillar is expected to 
fail when it is approximately 38m wide.
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FIG. 12 Stresses in crown-pillar

Similarly, the LERD is shown in Fig. 13.
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FIG. 13 LERD in crown-pillar

Interpretation of these later results needs careful 
consideration. In the calculation of LERD, a question that 
requires asking is: if this pillar were to fail, how much energy 
would be released by t he host rockmass? The results in Fig. 
13 illustrate that for pillar widths of approximately 59m or 
less, the host rockmass is releasing energy at a sufficient rate 
to induce a rockburst. Of course this energy would only be 
released if the pillar were to fail. Fig. 12 indicates that the 
stress level in the pillar does not reach sufficient magnitude to 
induce failure until the pillar is 38m wide. Hence, not only is 
pillar failure predicted at 38m width, the prediction that there 
will be more than sufficient energy released to induce violent 
failure can also be made. If the pillar volume was multiplied 
by the LERD (at 35m width) an expected energy release Wk 
in the order of 13 to 26 GJ can be obtained depending on how 
much of the pillar fails. Using the relation provided by Ryder 
and Jager (2002)

 2.15.1log10 −= Lk MW  [11]

it can be calculated that this represents an expected Richter 
magnitude on the order of 3.5 to 3.7.

This interpretation agrees well with the actual failure of 
4300 crown that can be described (pers. com. O’Donnell and 
Langille, 1998) as a series of violent events. Despite the fact 
that the failure process took a year, it was not a slow quiet 
process. This included several periods of intense seismic 
activity concentrated in the footwall area. At least 8 rockbursts 
were reported varying in magnitude from 2.0 to 3.6. Water 
inflow (i.e. seepage through the back) was observed from the 
level above. Rock displaced from the back to a height of 6m 
over the central slot and 1m to 2m in several of the footwall 
panels. The footwall contact was a continuous source of 
ground control problems. The hangingwall drift along the 
top edge of the pillar became impassable.

The accuracy of this prediction seems impressive.

6.2 Reliability of the Prediction
Now, the probability technique discussed above needs to be 
applied in order to determine exactly how accurately this 
prediction may be made without the benefit of hindsight.

The details of the stress predictions for various pillar widths 
are given in Table 4. Here Eq. 9 has been used to calculate  
the Pf.

TABLE 4 Crown-pillar details

Width σ1 σ3 ∆σ1/s Pf (%)

66 120.6 18.35 -4.23 0.001
59 122.9 12.81 -2.88 0.20
51 129.8 8.65 -1.58 5.71
43 137.8 5.35 -0.41 34.1
35* 144.0 3.72 +0.28 61.0
27 151.1 1.69 +1.12 86.9

* failure

This is presented graphically in Fig. 14 and 15.

Rockburst Prediction Using Numerical Modelling—Realistic Limits for Failure Prediction Accuracy
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FIG. 14 Stresses in crown-pillar
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By interpolation in Table 4 or from Fig. 15 it can be 
determined that the crown-pillar is expected to fail when its 
width is between 16m and 51m, or approximately 33±18m, 
with 90% confidence (95% minus 5%). This can be expressed 
as a prediction variability of ±55% (i.e. ±18/33).

7 DISCUSSION
The purpose of this paper is to determine if the moment of 
failure can be predicted? Above it was predicted with 90% 
confidence that the crown pillar would fail when its width is 
33±18m. This uncertainty represents well over half the mining 
life of the pillar. In terms of predicting the exact moment of 
failure, this is clearly not a very useful prediction.

On a positive note, even though the moment of failure 
cannot be predicted, it is very certain that the crown-pillar 
is going to fail in the middle 9 cuts. In addition, the energy 
calculations show that this is very likely to be a violent 
rockburst with a Richter magnitude of 3.5 to 3.7.

Close observation of Eq. 9 and Table 4 indicates that the 
prediction accuracy could be refined if the magnitude of s 
and hence Cp was somehow reduced. There are two main 
contributing factors. 

7.1 Rockmass Variability
For a given site, there is an inherent background level of 
uncertainty due to the variability associated with the in situ 
stress, strength and changing geology. The magnitude of this 
contribution could be reduced if we could spatially correlate 
our rockmass failure criterion to match these changes. 

Here, incorporating additional geological details into the 
model in the hope for a better match with actual changing 
conditions across our site could be considered. This may be 
as simple as introducing zones with different stiffness or 
pre-mining stress states. However, it is unclear whether the 
increase in accuracy anticipated by use of a more complex 
model is offset by the uncertainty introduced by the 

additional input parameters. It is conceivable that less reliable 
predictions could be obtained because of this. Certainly, back-
analysis would be required for confirmation.

Instead of trying to model the geological complexity, a 
simpler alternative is to determine a heterogenous rockmass 
strength distribution. Consistent success has been achieved by 
Nicholls (1992) by broadly defining lithological units across 
his mine sites. Application of the conventional method could 
be extremely useful in deciding how this should proceed.

Recently, attempts have been made to directly modify 
the rockmass response by physically loading the numerical 
model though incorporation of seismicity (Lachenicht et 
al., 2001 and Wiles et al., 2001). So far these have achieved 
limited success.

7.2 Numerical Modelling Technique
When large values of s are found from back-analysis, it 
is possible that this arises from use of an inappropriate 
modelling technique. Obvious causes for this can include ill-
posed models (2D versus 3D), geometric construction errors 
or numerical approximation errors. These problems can be 
readily dealt with and are really not the issue here.

In heavily loaded mines where significant stress transfer 
occurs as a result of yielding ground, homogeneous elastic 
models may not provide accurate predictions. Here we 
could consider introducing non-linear slip planes to model 
important structural features. Plasticity theory can be used to 
effect stress transfer. Block models can be used if unravelling 
is a dominant feature.

One must be very cautious in proceeding on this course. 
In addition to adding more complex simulation capability, 
we are also adding more assumptions and hence uncertainty. 
Despite our good intentions, it is entirely possible that we will 
end up with less reliable predictions because of this. Starfield 
and Cundall (1988) think this is so important that they have 
devoted an entire paper to addressing this issue.

It should also be noted that in order to make use of complex 
modelling techniques, more work is required in terms of 
time, calibration, verification and interpretation of results. 
Mine operators are generally chronically short on time for 
such investigations. Given a limited budget and time, more 
information will likely be gained by running many simple 
models rather than a few complex ones.

8 CONCLUSIONS
Reliable predictions regarding the location and magnitude 
of an impending rockburst have been demonstrated using 
a well calibrated numerical model. Although the failure is 
imminent, prediction of the exact time is very uncertain. 

Back-analysis shows that predictions can be made with 
uncertainty Cp of less than 10% in terms of stress. Using 
this, it was predicted with 90% confidence that the crown 
pillar would fail when its width is 33±18m, an uncertainty 
representing well over half the pillar width. Unfortunately, 
the uncertainty in terms of stress is greatly amplified in 
application to provide large uncertainty in terms of pillar 
width at the moment of failure. 

Higher accuracy predictions could be obtained with lower 
values of Cp. The back-analyses conducted here provided a 
prediction uncertainty Cp of 10%. In view of the fact that 
geo-materials generally exhibit coefficients of variation in 
the order of 20% to 30%, it is somewhat surprising that such 
a low value was obtained. This indicates that the predictive 
system is matching field observations very well.

Even by incorporating improved geological detail and 
more complex modelling capabilities, it seems unlikely that 
values for Cp significantly smaller than 10% could ever be 
attained. High accuracy conclusive predictions may not be 
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possible in a geological environment. It seems unlikely that 
the necessary low values of Cp are possible owing to the 
natural variability of the rockmass.

Detailed analysis of the calibration data can be used to 
characterize the variability and quantify the prediction 
uncertainty. Predictions of failure with known accuracy 
limits can then be made. As a result, cost and safety related 
decisions could be made with a known level of confidence 
providing real numbers that can be used to guide an 
engineering judgement.

The observational approach is well defined and can be 
easily used to quantify prediction variability with a minimum 
of engineering effort. When this method can be applied, it 
represents the best way of quantifying accuracy limits. This 
also quantifies the predictive capability of our entire system. 
Included are the rockmass variability, assumptions regarding 
input parameters and applicability of the chosen modelling 
technique.
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