
Mining operations near faults can induce sliding zones which grow further driven by the excess of the shear stress over 
friction at the loci of initiation. To model interaction between the sliding zones we assume, guided by the Guttenberg-
Richter law, that the distribution of their sizes is self-similar and the self-similarity is maintained in the process of their 
growth. We show that the latter is only possible if the sliding zones are coplanar and that the exponent and the prefactor of 
the distribution function are uniquely determined. The addition of a new sliding zone does not change the distribution but 
rather increases the upper cut-off. This happens either by instantaneous growth of the added zone to the maximum size 
producing the strongest microseismic event or by initiating a cascade of intermediate crack growth producing a series 
of smaller events. The found energy distribution permits risk assessment based on the determination of the probability of 
hazardous events.  The model parameters can be determined by observing statistical moments of the energy distribution 
combined with the determination of fault deformation from its influence on the approaching excavations by displacement 
monitoring. 
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1 INTRODUCTION
Mining-induced fault sliding and the resulting seismic event 
pose a considerable hazard to both the excavations and the 
environment (see for instance Gibowicz and Kijko, 1994 
and literature therein). Thus the problem of predicting high 
magnitude events is very important and received considerable 
attention in the literature. The major approach to theoretical 
prediction of dangerous fault sliding is to determine whether 
the conditions of sliding are satisfied and if yes, then within 
which area (e.g., Galybin and Odintsev, 1993).

In principle, this approach allows complete determination 
of the magnitude of the resulting seismic event and, 
subsequently, the amount of damage to the excavation and 
the environment provided that the key parameters of the 
rockmass and the fault are known. The key parameters in this 
case are the original stress state, the type and parameters of the 
rockmass constitutive behaviour and the strength properties 
of the fault (for instance the parameters of the friction law). It 
should be emphasised that while the determination of these 
parameters is hampered by the scale effect, the determination 
of the stress state and the rockmass deformability can be 
assisted by modelling the stress and displacement produced 
by the excavation and than back analysing the results of 
stress and displacement monitoring. 

The most difficult is however the determination of the 
fault strength properties, since the parameters determined 
by retrospective analysis of the post failure situation (post-
mortem examination) do not have to be relevant to a next 
sliding which will happen in conditions changed by the 
previous fault sliding. In this case the main tool for prediction 
of the sliding or, at least the risk assessment, is microseismic 
monitoring. The major challenge in microseismic monitoring 
is the development of interpretation methods which, in order 
to be realistic, have to be based on the understanding the 
mechanics of catastrophic fault sliding.

In many cases the mechanical behaviour of the fault 
is controlled by the rockmass structure encompassing a 
number of scales. Then the assumption of self-similarity 
in distributions of microstructural elements becomes a 
major simplifying factor in an otherwise usually intractable 

problem. There is a strong evidence of self-similar properties 
of both rocks and the Earth’s crust (e.g., Sadovskiy, 1983; 
Scholz and Aviles, 1986; Scholz, 1990; Redner, 1990; Olding, 
1992; Barton and Zoback, 1992; Turcotte, 1993; Gillespie et al., 
1993; Yamamoto et al., 1993; Dubois, 1998). 

The appearance of self-similar structures is usually 
attributed to the critical state of the material (e.g., Bak and 
Tang, 1989; Chopard and Droz, 1998), however, the particular 
mechanism of formation of self-similar distributions, 
particularly distributions of cracks and fractures, is poorly 
understood. The most popular approach is to consider 
the fractures as clusters of connected defects (e.g., Sahimi 
and Goddard, 1986; Nishiuma et al., 1996; Chakrabati and 
Benguigui, 1997; Mishnaevsky, 1998) which, near the critical 
state (i.e. at the percolation threshold), have self-similar 
distributions. It should however be noted that only in the 
2D picture these structures actually break the material. In the 
real 3D world the formation of such structures does not affect 
the connectedness of the body. 

Dyskin (2001, 2002) proposed a mechanism of developing 
isotropic self-similar distributions of disk-like cracks, based 
on crack interaction and leading to a self-similar distribution 
of crack sizes, with the distribution function proportional to 
the inverse fourth power of the crack radius. Essential in this 
model is the stable growth of the cracks, which is provided 
by a special type of loading, viz by a couple of concentrated 
forces applied at the centre of every disk-like crack. This 
paper develops this approach and applies it to the parallel 
self-similar fault systems. 

It is important to emphasise that the approaches based on 
self-similarity, in particular the concept of fractals are quite 
crude, since they deal mainly with the scaling exponent that 
determine the transition form one scale to another. This, 
despite of the crudeness, is an advantage for rock mechanics 
problems since it allows analysis in situations with restricted 
information and provides a basis for scaling the laboratory 
data to the scales relevant to the mining field situations. 
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2 MODEL OF A SLIDING ZONE
Consider a fault (or a system of parallel faults) and suppose 
the fault is in a meta-stable condition meaning that after a 
previous sliding there was sufficient time for a cementation 
process to restore the cohesion. We will express this condition 
in terms of the large-scale in situ shear, τ, and normal, σN, 
stress components, acting on the fault plane assuming that 
they satisfy the following conditions

 ϕσ=τϕσ+<τ tan,tan NNc  [1]

where ϕ is the friction angle and c is the cohesion created 
for instance by fault cementation.

Mining operations undertaken in a vicinity of the fault 
can generate local sliding zones, which, as yet, do not affect 
the fault stability. These zones appear at weak places due to 
change in the stress state caused by advancing excavations or 
due to local friction deterioration caused for instance by cyclic 
loading due to blasting. The local sliding zones can also be 
formed in the situation when the fault is locally hit by a tensile 
wave with a magnitude exceeding the normal compressive 
stress (this mechanism was considered by Dyskin et al., 1998). 
We will call these zones the initial sliding zones. The initial 
sliding zone (denoted by BB’ in Figure 1) is characterised by 
the sliding resistance, τI, which is considerably lower than the 
large-scale friction on the fault:

 ϕσ<ϕσ+=τ tantan NINII c  [2]

The initial sliding zone will propagate to a sliding zone 
of a certain length (denoted by AA’ in Figure 1). We will 

assume that the cementation in this zone is broken and the 
resistance to sliding is only provided by dilation on asperities 
in accordance to a conventional model (Patton, 1966). 

In the case when the sliding zone is alone (interacting 
self-similarly distributed sliding zones will be considered 
in the following sections) its development can be modelled 
by a shear crack laded at segment BB’ by shear tractions 
τ−τI, Figure 2a. Since we are going to consider potentially 
extensive development of the sliding zones which are much 
greater than the size of the initial zone we will, as a further 
simplification, model the sliding zone as a crack sheared by 
a pair of concentrated forces of average magnitude F=S(τ−τI), 
where S is the area of the initial sliding zone, Figure 2b.

The growth of such sliding zones is controlled by the fault 
microstructure, in particular the fault roughness and the 
strength of the gouge. Macroscopically, these factors will be 
represented by Mode II fracture toughness, KIIc assumed to be 
scale-independent. Then the crack propagation type criterion 
can be used as a criterion of the sliding zone growth:

 KII=KIIc [3]

For the crack shown in Figure 2b, the Mode II stress intensity 
factor KII has the following form (e.g., Tada et al., 1985)

 
2l

FKII π
=  [4]

where l is the crack length.
As evident from equations (3) and (4), the sliding zone 

grows in a stable manner with the radius increasing as F2. This 
imposes bonds on the sizes of the sliding zones meaning that 
the growth of separate sliding zones by themselves cannot 

Laboratory Testing and Experiments (1)

Fault zone, cementation, τF=c+σNtanϕ

Initial sliding zone, τI=cI+σNtanϕI

Reversible sliding zone, τS=σNtanϕ
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FIG. 1  A schematic 2D representation of a fault with a sliding zone AA’ developed from an initial sliding zone BB’

τ-σNtanϕ=0

τ−τI
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B B' ≈
F=S(τ−τI)
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FIG. 2  A model of the sliding zone: (a) a representation of the sliding zone as a shear crack; (b) modelling the sliding zone as a shear 
crack loaded by a pair of concentrated forces
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cause catastrophic sliding. The mechanism of large seismic 
events should therefore be sought in the effect of interaction 
between the sliding zones. This mechanism is considered in 
the following section. 

3 EMERGENCE OF SELF-SIMILARITY IN 
DISTRIBUTIONS OF INTERACTING CRACKS

Interaction between sliding zones literally means that each 
zone propagates driven by a superposition of the external 
stress and stress disturbances, generally non-uniform, 
generated by all other zones. When the number of sliding 
zones is large the modelling of propagation of interacting 
sliding zones becomes quite complicated. 

A considerable simplification can be achieved by 
employing the notion of self-similarity in the distribution 
of the sliding zones, which follows from the Guttenberg-
Richter law universally observed in the records of both 
natural and mining-induced seismic events (e.g., Gibowicz 
and Kijko, 1994). Then the fact that self-similarity implies 
that the scaling is described by the power law, is the major 
simplifying factor in addressing the problem of interaction 
as will be shown in the following section. More importantly, 
in some cases, including the case of sliding zones considered, 
the interaction itself can produce self-similar distributions as 
will be demonstrated below (the consideration below will 
use the method developed by Dyskin (2001, 2002) for Mode 
I cracks in 3D).

Consider a material with cracks growing in a stable manner, 
for instance driven by pairs of equivalent concentrated forces 
applied to the centres of the crack faces. Suppose that the 
cracks are located randomly. Then, even if all cracks were 
initially of the same size and were loaded by exactly the same 
forces, the interaction will make them grow differently such 
that a certain size distribution of cracks will emerge. One can 
then assume that the difference in the crack sizes will only 
increase with their growth. Thus the interaction of such cracks 
can be modelled in the asymptotics of large distribution of 
sizes (Salganik, 1973) assuming that: (i) cracks of close sizes 
do not interact directly and; (ii) the interacting cracks are 
very different in size. Then each crack can be considered in an 
equivalent medium with effective characteristics determined 
by all cracks of smaller sizes. 

We will start the consideration with a somewhat artificial 
case of isotropic distribution of sliding zones (shear cracks), 
meaning that the faults subject to sliding are randomly 
oriented. We will further assume that the asperity-resisted 
sliding can be reversible such that small deviations of the 
shear stresses from the friction stress can cause both increase 
and reduction in the zone sliding. This assumption is 
essential for the proposed use of the effective characteristic 
theory since the basis of it – the consideration of a crack in an 
effective medium determined by smaller cracks – presumes 
that the effective medium is elastic at least in a vicinity of the 
equilibrium point, including the assumption that loading and 
unloading in that vicinity follow the same path. Modelling of 
this case will provide the concept which will then be extended 
to the realistic case of parallel faults.

For isotropic distribution of sliding zones the average 
stress intensity factor <KII> is given by (see Dyskin, 2002 for 
details)

 E
E

K
K

II

II 0
0 ~  [5]

where E is the effective Young’s modulus, E0, is the Young’s 
modulus of the material, KII

0 is the stress intensity factor for 
the shear crack without interaction. Then the criterion of 
crack propagation (3), (4) assumes the form

 
E
E

l
FKIIc 0

2π
=  [6]

Suppose that at a certain value of the load, F, the cracks 
have the distribution function f(l), l0≤l≤lmax. Here l0 is the 
length the crack would have without the interaction, lmax is 
the maximum length attained under the given value F. It will 
be assumed that this crack distribution can approximately be 
considered as the wide distribution of sizes. 

In accordance with this method, the effective moduli for 
the material with cracks up to the given length should be 
calculated. Consider cracks with lengths between l and l+dl. 
These cracks shall be considered as non-interacting and placed 
in an effective medium determined by cracks of lengths less 
than l. Let the Young’s modulus and Poisson’s ratio of this 
medium be E(l) and ν(l). Then, following Salganik’s (1973) 
method, the effective characteristics for the medium with the 
new cracks of lengths between l and l+dl are obtained as the 
effective characteristics of a medium with moduli E(l) and 
ν(l) with non-interacting cracks of concentration: 

 dllfNlld )()( 2=Ω  [7]

where N is the number of cracks per unit area. 
For the case of pure shear cracks (no opening or closure, 

i.e. normal displacement is continuous through the crack) the 
effective moduli in the approximation of low concentrations 
(Ω<<1) have the following form (e.g. Krajcinovic, 1996):
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Here, for the sake of simplicity, only the plane stress 
conditions are considered. The plane strain situation can be 
found by formal replacement E → E(1 – v2)–1, v → v(1 – v)–1. 
According to the differential self-consistent method, at each 
step that we apply formula (8) the moduli at the previous 
step play the role of E0 and ν0, in the approximation of low 
concentrations, such that 
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We now obtain from the first equation that
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Expressing E from (6) differentiating it with respect to l and 
substituting into (9) one obtains
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The distribution function should satisfy the usual 
normalisation condition
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where N is the number of cracks per unit area, Fmax is the 
force magnitude at which the maximum crack length becomes 
infinite, which can be interpreted as the material failure. The 
lower boundary, l0 corresponds to the crack growth “not 
assisted” by the interaction.

The power law (10) together with lmax/l0→∞ can be 
interpreted as an emergence of a self-similar distribution in 
the crack arrangement considered. In more complex cases of 
crack arrangement it is technically more difficult to trace the 
emergence of self-similar distributions. What can be done 
instead is to determine whether the self-similar distributions 
are stable with respect to the described type of crack growth. 
This, necessary condition of the self-similar distributions will 
be analysed in the following sections.

4 MECHANICS OF MATERIALS WITH SELF-SIMILAR 
CRACK SETS

Let the crack distribution be self-similar such that there is 
no characteristic size in the microstructure. According to 
Dyskin (2004) a material with such crack distribution should 
be modelled simultaneously at all scales by a continuous set 
of continua (the H-continua) with the volume element sizes, 
H, assuming all values. In this case, all continuum quantities 
should be also functions of scale, H. Then all characteristics of 
the continua become the power functions of H. Furthermore, 
it was proven that all tensorial properties should scale 
isotropically, i.e. all tensorial components should scale with 
the same exponent. In particular, the tensors of elastic moduli, 
C, and compliances, A, in a Cartesian co-ordinate frame x1, 
x2, x3 must scale for any crack orientations and any material 
anisotropy as

 
β−=α=

== βα

,3,2,1,,,
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lkji
HaHAHcHC ijklijklijklijkl  [13]

for all non-zero components of the prefactors. 
The prefactors and exponents can be determined from the 

following system of equations, if the expression for the scaling 
for the contribution of cracks to the compliances or moduli, 
∆Aijkl= ∆AijklH

γ or ∆Cijkl= ∆CijklH
γ are known for the case of 

non-interacting cracks (sic!). Then using the differential self-
consistent method and taking into account that according 
to the dimension analysis γ=β−1 (or γ=α−1) one obtains the 
following system of scaling equations (see details in Dyskin, 
2004)

 ijklijklijklijkl ccaa ∆=α∆=β or  [14]

Each of the above systems is generally a system of 21 
equations for 22 unknowns, aijkl and β. Since the prefactors for 
both compliances and the increments have the same units, 
one of the compliance prefactors can be chosen arbitrarily, 
while the other prefactors and the exponent can be found 
from equation (14).

Furthermore, in line with equation (5), the average SIFs, in 
particular the Mode II SIF, scale as

 <KII(H)>~H−α [15]

For a special case of self similar crack distributions f(l)=ωl-3, 
to which distribution (10) belongs (with the concentration 
factor ω=8/πN), it is shown by Dyskin (2002) that the 
assumptions of the wide distribution of sizes are satisfied 
and that the differential self-consistent method can be used 
to determine ∆cijkl. 

In the case of randomly oriented mode II cracks the 
second system of scaling equations (14) can be obtained from 
equation (8) by considering only the crack contribution to the 
moduli and then by formal replacement of Ω with ω:
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The solution of equation (16) reads
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where e is a normalising prefactor. It is seen that both Young’s 
modulus and Poisson’s ratio scale according to power laws. 
The exponent for the Young’s modulus is proportional to the 
concentration factor ω, while the exponent for the Poisson’s 
ratio is zero because the Poisson’s ratio is bounded. It is 
interesting that the value for the plane stress Poisson’s ratio 
is found to be 1, which after the replacement v → v(1 – v)–1 

gives that the value of Poisson’s ratio is 0.5, suggesting that 
materials with self-similar distributions of isotropically 
oriented pure Mode II cracks are incompressible. This is 
because formally, for finite ω, the total crack concentration 
is infinite such that the properties of materials with self-
similar crack distributions are fully controlled by the crack 
behaviour. In this case the incompressibility is a result of the 
absence of any normal relative displacements of the faces of 
Mode II cracks.

Consider now a case of parallel Mode II cracks which 
could model sliding over a distributed set of parallel faults. 
Suppose the cracks are oriented perpendicular to the x2 axis 
and distributed self-similarly with the distribution function 
f(l)=ωl-3. For this case the effective compliances can be found 
from the general solution by Vavakin and Salganik (1978) in 
which the contribution of the crack in the normal strain in 
the direction perpendicular to the cracks (the x2 axis) should 
be set to zero:
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Here A11
0, A22

0, A12
0, A66

0 are the compliances of the material, 
such that the Hook’s law has a form: 

 

ε11=A11 0σ11+A120σ22

ε22=A12 0σ11+A220σ22

ε12=½A66 0σ12.

 [19]

The scaling equations (the first system in equation (14)) can 
be obtained by replacing Ω with ω bringing Aii

0 to the left-
hand sides and then replacing Aii-Aii

0 with βaii and, finally, 
replacing Aii

0 with aii in the remaining parts. This yields the 
following scaling equations

 

( )++ω
π

=β

=β
=β
=β

221166121166

22

12

11

22
4

0
0
0

aaaaaa

a
a
a

 [20]

If β≠0 then the first equation of (20) yields a11=0 and then 
the last equation produces β=0. This results in the following 
scaling laws:

 
0,0, 11 ==β= β aHaA ijij  

 [21]

a66 being a normalising constant. 
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The result that the compliance a11, that relate normal stress 
and strain components, is zero, is not surprising since it 
merely reflects the fact that a parallel set of mode II cracks 
only reduces the shear compliances (a66). Given that formally 
the total crack concentration is infinite the other compliances 
become infinitely small as compared to a66. What could not be 
predicted without solving the scaling equations is the trivial 
scaling of a66. It should be noted that the same situation will 
take place in the case of two sets of mutually orthogonal 
Mode II cracks. This trivial scaling will have a profound 
effect on the stability of this crack distribution with respect to 
their growth as is explained in the following section.

5 STABILITY OF DISTRIBUTED SELF-SIMILAR SETS 
OF GROWING CRACKS

We are now in a position to check whether the above 
distributions of Mode II cracks are stable with respect to the 
mechanism of crack growth described in Section 2. Assuming 
that each homogenisation scale H~l (in the H-continuum 
only cracks of sizes l>H can be seen) and then substituting 
equation (15) into the expression for the stress intensity factor 
(4) and then into the criterion of crack growth equation (3) 
one obtains

 
21~ −α−= lKK IIIIc  [22]

From here, since the fracture toughness, KIIc, is assumed 
to be scale independent: –α-1/2=0. Therefore, if the cracks 
are to grow keeping the self-similarity the exponent of the 
moduli scaling cannot be arbitrary, but should satisfy 

 21−=α  [23]

For isotropic distributions of Mode II cracks this, according 
to equation (17) corresponds to

 π8=ω  [24]

Thus the concentration factor of the crack distribution 
remains constant such that the crack growth only affects the 
lower and upper cutoffs of the distribution (both lmax and l0 
get increased in accordance with equations (12)).

In the case of parallel Mode II cracks condition (23) cannot be 
satisfied due to the trivial scaling (α=β=0). Therefore, for such 
crack distributions, the self-similarity cannot be maintained: 
it will be destroyed by crack growth. Consequently, one 
cannot expect that the crack growth will be accompanied 
by self-similar seismic emission which contradicts the 
Guttenberg-Richter law. This suggests that the case of 
distributed cracks locations is not realistic and a situation of 
cracks localised in a narrow band should be considered. This 
will be accomplished in the following section.

6 LOCALISED SETS OF PARALLEL CRACKS. 
STABILITY OF SELF-SIMILAR DISTRIBUTIONS

The instability of a self-similar distribution of parallel cracks 
with respect to the crack growth came from the fact that 
the scaling exponent vanishes. This, in its own turn, is a 
consequence of the fact that these cracks do not contribute 
to some compliances that characterise the orthotropic H-
continua which model the material with one set of parallel 
cracks. Therefore, in order to find a stable arrangement of 
parallel cracks, one needs to find a situation when the cracks 
influence all essential components of compliances. An obvious 
candidate for this is a localised distribution of parallel cracks, 
i.e. the distribution in which all cracks are concentrated within 
a thin layer, Figure 3. (In order to maintain the self-similarity 
the layer should be infinitesimally thin; in reality its thickness 
should be much smaller than the lower cutoff of the crack 
lengths, l0.) We will model such a set of coplanar cracks as 

a Winkler layer with the shear stiffness k defined as τ=k∆us, 
where ∆us is the shear displacement discontinuity over the 
layer (difference in displacements at opposite boundaries of 
the layer) in response to shear load τ.

l

FIG. 3  Coplanar sliding zones localized in the fault

Under the assumption of self-similar crack distribution, the 
stiffnesses should scale with the same exponent (since they 
are components of a diagonal tensor relating the stress vector 
and displacement discontinuity vector):

 
αHk ~   [25]

Suppose the cracks are distributed as follows
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Let an H-continuum comprise all cracks of the size up to 
l~H. Transition to the scale H+dH leads to the addition of 
new cracks occupying the relative length of the fault (the 
area per unit length in the direction normal to the drawing on  
Figure 3) dω=λl1-mdl. These new cracks increase the average 
(effective) stress, τeff, by the factor of (1-dω)-1, because the 
presence of cracks simply reduce the intact area subjected to 
loading with a given total force. This results in the reduction 
of effective stiffness by the factor of (1-dω). Subsequently

 dk/k=-λl1-mdl

Obviously, the power law is only possible if m=2. Then the 
solution of the above differential equation reads:
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The influence of the interaction on the average stress 
intensity factor scales inversely to the scaling of stiffness, 
therefore the criterion of crack grows reads
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Therefore, the self-similarity will be preserved if 

 21=λ  [29]

The total dimensionless concentration of cracks with sizes 
in the range from l0 to lmax is

 
0
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2
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l
l
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Thus, the self similar distribution of parallel sliding zones 
in an infinitesimally thin layer is stable with respect to their 
growth.

7 SELF-SIMILAR CASCADES AND THE RESULTING 
MICROSEISMIC ENERGY DISTRIBUTION

If we assume that the self-similarity of the size distribution 
of sliding zones is maintained, then the process of their 
evolution can be described as follows. The new sliding zones 
which are initially the zones of average length l0 induced as 
a result of mining operations will violate the self-similarity. 
Therefore, the self-similarity will have to be restored by 
growing these new cracks (or some of them) to the highest 
lengths or by propagating them to some intermediate lengths 
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followed by increasing the lengths of some other cracks. This 
cascade of propagating sliding zones will result in a new 
distribution with the same minimal length l0 but with an 
increased maximal one, lmax. 

In order to model this cascade of propagating cracks 
consider a level l. Since the cracks grow in such a way that 
the concentration factor, λ, remains constant (see (29)), the 
number of crack grown to length l should equal the number 
of cracks of length l starting their growth in the process of 
rearrangement. Let g(l) be a fraction of cracks grown to length 
l. Due to self-similarity this distribution should be expressed 
by a power law with a certain exponent k:
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Subsequently the distribution of cracks grown to length l 
is
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Consider now the energy distribution of microseismic 
events emitted by the cascade. Suppose the microseismic 
event is associated with a growth of a crack (sliding zone) 
from a certain length l1 to length l. We will assume that this 
growth happens dynamically such that the energy emitted by 
the crack, E(l) is approximately equal to the change in elastic 
energy associated with the displacement of the crack faces. 
Since the crack growth is caused by the crack interaction, 
represented in this model by the uniform effective stress 
τeff, the energy in the considered 2D case is E(l)~τeff(l

2-l1
2). 

Assuming that the majority of growing cracks considerably 
increase their lengths, l>>l1 and taking into account the last 
equation of (27) and equation (29) one obtains

 
25)( ll κ=Ε   [33]

One can now obtain the energy distribution expressed by 
the probability of events with energy greater that a certain 
level U:
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This is a Guttenberg-Richter law expressed in terms of the 
energy rather than magnitude. After relating the exponent 
2(k+1)/5 to the empirical one it is possible to find k. 

8 DETERMINATION OF THE MODEL PARAMETERS 
AND RISK ASSESSMENT

In order to determine the parameters of the model we 
consider statistical moments of energy:
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Thus by measuring the consecutive energy moments 
<En> one can determine remaining parameters, κ, l0, lmax 
and the combination λγ. Parameter λ in this combination 
should be determined separately, for instance by considering 
progressive fault sliding due to advancing of an excavation, 
since this parameter together with l0 and lmax determine 
effective stiffness of the fault. In this case the back analysis of 
the continuous displacement monitoring of the surface of the 
advancing excavation will be needed.

When these parameters are found the rock burst hazard 
assessment can be performed. Firstly, the maximum energy 
of a microseismic event can be determined:
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If this energy exceeds the safe level, Esafe, then the 
microseismic event is considered hazardous. The risk of a 
hazardous microseismic event can be estimated as
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9 CONCLUSIONS
We have considered a specific mechanism of microseismicity 
associated with the propagation of sliding zones within 
a fault zone in such a way that the distribution of sizes of 
the sliding zones maintains self-similar. This is of course a 
very strong assumption. If the persistent observations of 
Guttenberg-Richter law, both at the scale of earthquakes and 
at the scale of mining-induced microseismicity, is a sufficient 
reason to believe that the self-similarity is the prevailing 
characteristics of the fault sliding, then we have a method 
of hazard assessment of rock bursts. It is essential that not 
all parameters needed for the hazard assessment could be 
determined from the microseismic measurements; these must 
be complemented by the observations of the process of the 
fault deformation. This can be done indirectly by observing 
the effect of the fault deformation on the approaching 
excavations by means of continuous displacement monitoring 
and back analysis. Specific methods for such monitoring still 
need to be developed.
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