@inproceedings{1208_10_Kammerzell, author={Kammerzell, KC}, editor={Fourie, AB and Tibbett, M}, title={Mine closure drainage channel planning – lessons learned}, booktitle={Mine Closure 2012: Proceedings of the Seventh International Conference on Mine Closure}, date={2012}, publisher={Australian Centre for Geomechanics}, location={Perth}, pages={93-99}, abstract={Controlling surface water at mine locations using drainage channels for diversion of upland watersheds or distribution/collection of runoff from mine properties is common practice around the globe. During operation, channels are used to limit surface water impacts to active mining efforts using the least amount of work space feasible. In mine closure, channels are used to limit the exposure of cover systems to rainwater infiltration or erosion and are expected to perform for years after the closure has been completed. If not planned or maintained properly, these drainage features can fail at the most inopportune time, causing stoppage of work or compromising a critical facility under closure. This paper presents a management approach to drainage channel planning to incorporate closure configurations into operating drainage control activities. Looks at common failure modes of channels by example and recommends methods to minimise the failure risk in future configurations. The paper also identifies value engineering opportunities to limit both initial capital and long term maintenance requirements for channels. These are accomplished by planning locations of diversion and collection channels that function in tandem under both closure and operating conditions. Controlling how water enters the channel from upland features, limiting the undermining of drainage control features by erosion adjacent to the channel; Designing bedding of riprap lined channels to limit the most common failure modes; and, localising energy drops in long channels to focus highest erosion risk to controlled sections of more robust revetment, limiting cost projected over the structure length. }, doi={10.36487/ACG_rep/1208_10_Kammerzell}, url={https://papers.acg.uwa.edu.au/p/1208_10_Kammerzell/} }