Rickson, RJ & Loveday, AD 2012, 'Can erosion control blankets (geotextiles) aid vegetation establishment in mine restoration?', in AB Fourie & M Tibbett (eds), Mine Closure 2012: Proceedings of the Seventh International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 481-492, https://doi.org/10.36487/ACG_rep/1208_42_Rickson (https://papers.acg.uwa.edu.au/p/1208_42_Rickson/) Abstract: Establishing vegetation is a critical phase in the reclamation and restoration of disturbed sites. The canopy, stems and roots components of vegetation are able to protect and stabilise the landscape from slope degradation processes such as surface erosion, shallow mass movements and loss of organic matter. Slope erosion from plots with low growing, dense sward grasses can be as little as 0.4% of that from a bare soil equivalent. Creating a non-degrading, stable environment is vital for ecological restoration to take place successfully. However, establishing vegetation in erodible and erosive conditions characteristic of disturbed land is a major challenge for site managers, environmental engineers and landscape architects. Vegetation establishment aids include mulching; soil amendments and conditioners; hydro- and mulch-seeding; and erosion control blankets (geotextiles). This paper collates the results of several laboratory and field-scale experimental trials where the effectiveness of geotextiles in establishing vegetation has been monitored. The studies considered different geotextile products: natural versus synthetic; woven versus non-woven; and surface versus buried mode of installation. Other variables include soil type and seed mixes applied. To add to the evidence base, measurements of initial germination and percentage emergence under different geotextile covers are reported, as well as percentage cover achieved at the end of the trials. The latter indicates the ability of the vegetation to stabilise sites so that successful ecological restoration can take place. Results demonstrate that geotextile treatments can increase the rate of seed germination, emergence and final percentage cover, compared to bare soil control plots. Rates differ between product types and are often linked to geotextile properties such as percentage cover; material and mode of manufacture and degree of geotextile/soil contact. These characteristics affect soil moisture contents and diurnal temperature ranges which have direct impact on vegetation growth. Performance was also affected by the type of seed mix used in the trials. One unexpected result was that the geotextiles controlled the invasion of weed species that were observed on the bare soil plots.