@inproceedings{1308_41_Havaej, author={Havaej, M and Wolter, A and Stead, D and Tuckey, Z and Lorig, L and Eberhardt, E}, editor={Dight, PM}, title={Incorporating brittle fracture into three-dimensional modelling of rock slopes}, booktitle={Slope Stability 2013: Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering}, date={2013}, publisher={Australian Centre for Geomechanics}, location={Perth}, pages={625-638}, abstract={During the last decade significant advances have been made in the two-dimensional modelling of brittle fracture associated with rock slope failure both in open pit mines and natural mountain slopes. This paper focuses on the application of the three-dimensional lattice code, Slope Model, in modelling brittle fracture and damage evolution involved in three-dimensional kinematically-controlled slope instability mechanisms. Results of simulations of non-daylighting wedge failure and active-passive block slope failures are presented, with an emphasis on characterising brittle damage at varying stages of slope failure development. A new approach to characterising brittle fracture damage is developed based on fracture generation rates and the inverse velocity of the failing rock mass. Brittle fracturing of ‘in-plane’ and ‘out−of−plane’ rock bridges is simulated using a conceptual approach incorporating a simple Discrete Fracture Network (DFN) into simulations. In order to simulate the complex geometry associated with three−dimensional slope failures, pre-processing routines have been developed to incorporate photogrammetric and LiDAR derived Digital Elevation Models (DEMs) within the Slope Model software. Procedures are demonstrated through the use of preliminary Slope Model simulations of the Vajont landslide, a major catastrophic landslide, which resulted in the loss of over 2,000 lives. }, doi={10.36487/ACG_rep/1308_41_Havaej}, url={https://papers.acg.uwa.edu.au/p/1308_41_Havaej/} }