Sainsbury, DP & Sainsbury, B 2013, 'Three-dimensional analysis of pit slope stability in anisotropic rock masses', in PM Dight (ed.), Slope Stability 2013: Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 683-695, https://doi.org/10.36487/ACG_rep/1308_45_Sainsbury (https://papers.acg.uwa.edu.au/p/1308_45_Sainsbury/) Abstract: Anisotropic and foliated rock masses, the behaviour of which are dominated by closely spaced planes of weakness, present particular difficulties in the assessment of pit slope stability. Various numerical modelling techniques are available that explicitly simulate the joints and discontinuities within an anisotropic rock mass. However, due to the computational intensity of these numerical techniques, it is not practical to explicitly simulate the joint fabric of an entire three-dimensional pit slope for routine stability assessment. In order to simulate the effects of anisotropic rock mass strength and deformation behaviour on pit slope stability, a modelling methodology has been developed to account for rock mass anisotropy and scale effects using a continuum based ubiquitous joint constitutive model. This paper outlines the anisotropic modelling methodology and presents a series of demonstration models that have been used to validate the technique.