Roth, A, Cala, M, Brändle, R & Rorem, E 2014, 'Analysis and numerical modelling of dynamic ground support based on instrumented full-scale tests', in M Hudyma & Y Potvin (eds), Deep Mining 2014: Proceedings of the Seventh International Conference on Deep and High Stress Mining, Australian Centre for Geomechanics, Perth, pp. 151-163, https://doi.org/10.36487/ACG_rep/1410_08_Roth (https://papers.acg.uwa.edu.au/p/1410_08_Roth/) Abstract: Ground support for dynamic conditions must be able to withstand the associated loads and deformations and the support scheme has to work as a system. In order to prove the suitability of such support systems with mesh and bolts, and to also analyse the bearing behaviour of them, a full scale test setup was commissioned in 2012 in Walenstadt, Switzerland. On this test rig it is possible to apply large energies on a ground support scheme with four dynamic bolts and a mesh panel of 2.4 × 2.4 m in a full-scale way. The test site is highly instrumented, and in this paper the analysis of the load cells, the accelerometers and the high speed video cameras is given. It can be shown that the bolts as the stiffest elements are always loaded first and then load is transferred to the surface support during the stopping process. Together with the numerical modelling and back calculation of the tests, it is possible to learn more about the stopping process of dynamic loading of ground support and consequently determine the load and energy distribution between the components. The full-scale tests show that stiff bolts and also mesh which is able to stop high loads at low deformations are required to withstand large dynamic loading without substantial deformations during a seismic event.