Fernandez-Iglesias, A, Andres, S, Luiña, R, Pecharroman, D & Alvarez-Cabal, V 2015, 'Differential water footprint assessment – conventional versus paste tailings disposal', in R Jewell & AB Fourie (eds), Paste 2015: Proceedings of the 18th International Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, Perth, pp. 561-573, https://doi.org/10.36487/ACG_rep/1504_43_Fernandez-Iglesias (https://papers.acg.uwa.edu.au/p/1504_43_Fernandez-Iglesias/) Abstract: In August 2014, the international standard ISO 14046:2014 ‘Environmental management — Water footprint — Principles, requirements and guidelines’ (International Organization for Standardization [ISO] 2014) was released. This is the first version ever published on water footprint, and therefore an important milestone for all environmental activities related to water management. The issue of water and its management has become increasingly central to the global debate on sustainable development. This interest has been driven by growing water demand, increasing water scarcity in many areas and/or degradation of water quality. This drives the need for a better understanding of water related impacts as a basis for improved water management at local, regional, national and global levels. It is therefore desirable to have appropriate assessment techniques that can be used in an internationally consistent manner. One of the techniques being developed for this purpose is the water footprint assessment (ISO 2014). Water and mining have always had a close connection because most mining and mineral processing operations require water, often in large amounts (Rowe 2012). Mining activities can contaminate surface and groundwater and demand great amounts of water, especially froth process used as a method of minerals separation. There are some minerals such as coal, cyanide or bauxite that can severely affect freshwater resources. Moreover, closure stage requires special treatments because of significant long-term environmental liabilities – they must be pumped and treated indefinitely to prevent contamination of surface and ground waters (Hendrix 2012). Despite of the fact that mining represents a very small fraction of the total world’s water demand, its impact on local resources surrounding mine sites can be significant. The problem is that mining operations cannot be relocated, making the sector susceptible to changing local water availability (Barton 2010). Paste and thickened tailings technology is nowadays a proven solution for one of the biggest environmental impacts of mining activities: tailings disposal. Among the various drivers that this technology has, water is probably one of the most important, not only from an environmental perspective but also from an economic one. This paper applies the methodology proposed by the Water Footprint Network International and later published as an ISO norm, to assess the differential Water Footprint of two scenarios, conventional tailings management and its alternative process, paste and thickened tailings.