Jarvis, M & Schneid, S 2015, 'The new Wynyard Walk pedestrian tunnel in Sydney — a monitoring challenge', in PM Dight (ed.), FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Australian Centre for Geomechanics, Perth, pp. 289-301, https://doi.org/10.36487/ACG_rep/1508_17_Jarvis (https://papers.acg.uwa.edu.au/p/1508_17_Jarvis/) Abstract: This paper considers deformation monitoring during the construction of Wynyard Walk, a fully accessible pedestrian link between Wynyard Station, the developing CBD western corridor and Barangaroo. The tunnel is around 180-m-long, 3.5-m-high and 9.5-m-wide, designed for a capacity of up to 20,000 pedestrians per hour. The tunnel was constructed using a Roadheader. Tunnel ‘sets’ provide the primary support, with 110 sets installed at one-metre intervals. The tunnel is fully encased in concrete to provide secondary support. The project is located in close proximity to sensitive buildings and structures including highrise commercial towers, a heritage building and a live rail tunnel. Key features of the project include: A project of this complexity requires a comprehensive monitoring program to ensure the stability and functionality of buildings and infrastructure within the area of construction influence. An important onsite aspect of an automated monitoring system is data acquisition. A mixture of wired and wireless data transmission systems are installed to transmit all recorded data to an structured query language (SQL) based data management system running on an internet server. We will examine the complete process of data acquisition, from measurement to user-defined reports. The applied monitoring concept at Wynyard Walk integrates both geotechnical and geodetic methods. Based on automatic and manual readings, rigorous mathematical routines including statistical quality control are applied.