Bozzano, F, Esposito, C, Mazzanti, P & Rocca, A 2015, 'Quarrying-induced subsidence investigated by combining contact and remote monitoring systems', in PM Dight (ed.), FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Australian Centre for Geomechanics, Perth, pp. 465-474, https://doi.org/10.36487/ACG_rep/1508_31_Bozzano (https://papers.acg.uwa.edu.au/p/1508_31_Bozzano/) Abstract: This work focuses on a multidisciplinary study carried out in an urban area located 20 km east of Rome, Italy affected by subsidence (and related structural damages) induced by dewatering related to quarrying activities. An intense monitoring activity has been carried out in order to understand the spatial and temporal evolution of the process by using both contact and remote sensing methodologies. Underground geological setting has been derived thanks to geotechnical investigations carried out by means of more than 90 boreholes. The hydrogeological variations occurred in the last decades as the response to the anthropic stress, has been obtained by a 3D numerical model based on a large piezometric monitoring dataset. Single buildings have been monitored by means of levelling and total stations, while on site instruments to monitor the groundwater levels (electric cluster piezometers) and in depth ground deformation (assestimeter) have been installed. On larger scale, multi-temporal aerial photos have been analysed to infer the increase of quarrying exploitation, whereas satellite A-DInSAR analyses have been carried out at different scales in order to achieve information about past displacements. This comprehensive set of data allowed us to describe the space and time distribution of the subsidence process.