Brunetti, A & Mazzanti, P 2015, 'Monitoring an unstable road embankment for public safety purposes by Terrestrial SAR Interferometry', in PM Dight (ed.), FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Australian Centre for Geomechanics, Perth, pp. 769-780, https://doi.org/10.36487/ACG_rep/1508_56_Brunetti (https://papers.acg.uwa.edu.au/p/1508_56_Brunetti/) Abstract: A road embankment in Northern Italy, made up of reinforced earth, was affected, in 2013, by severe instability problems. Following heavy rainfalls, large cracks appeared on the National and Provincial relevance roads crossing the structure. For public safety, the area was closed causing a serious impact on the local traffic. In this paper is presented an innovative approach based on Terrestrial SAR Interferometric (TInSAR) monitoring for the support to the management of the emergency, the design of stabilisation countermeasures and for the control of the slope stability during the works for the stabilisation of the structure. In a couple of days, the system was installed and collected data allowed to detect a generalised instability affecting the whole embankment with velocity rates ranging between 5 mm/day and 1 mm/day, also in response to heavy rainfalls. Subsequently, a strong deceleration of the phenomenon has been registered. No anomalies have been detected, on the contrary, on the surrounding areas and on the slope upon the embankment, thus suggesting for the instability of the only engineering structure. Following the emergency phase, TInSAR monitoring allowed controlling the stability of the embankment also during the implementation of the stabilisation works for safety and early warning purposes. A progressive mitigation of the instability phenomenon has been registered up to its overall depletion, thus suggesting the efficacy of the performed works.