Fowler, A & Geier, A 2015, 'Field test of long range terrestrial laser scanner and ground-based synthetic aperture radar for area monitoring in open pit mines', in PM Dight (ed.), FMGM 2015: Proceedings of the Ninth Symposium on Field Measurements in Geomechanics, Australian Centre for Geomechanics, Perth, pp. 797-808, https://doi.org/10.36487/ACG_rep/1508_59_Fowler (https://papers.acg.uwa.edu.au/p/1508_59_Fowler/) Abstract: Slope Stability Monitoring (SSM) has improved dramatically over the past few years with the introduction of total stations, radar and other advanced technologies. This trend is continuing with the use of Terrestrial Laser Scanners (TLS) to enable three-dimensional measurement of slope movements. With useful range of the instruments typically limited by the balance of eye-safety and laser power, the application of TLS systems has been limited to short range scenarios. However, applying infrared wavelengths and novel innovations, these limitations have been surmounted and now monitoring applications beyond 2,000 m are possible at high measurement rates without the safety hazards associated with typical Class 3R long-range laser scanners (LR-TLS). It is now possible to use LR-TLS technology effectively for long range SSM and surface deformation analysis. In a cooperative field test conducted by RIEGL LMS, DMT GmbH & Co. KG, and RWE Power AG, a RIEGL VZ4000 online-waveform processing LR-TLS instrument was deployed in a large opencast coal mine in Germany. LR-TLS data was continuously acquired for a period of 48 hours concurrently with an IDS IBIS-FM long range ground-based Interferometric Synthetic Aperture Radar (GB-InSAR) system and, additionally, a Leica total station monitoring system. Results from this field test demonstrate the potential of this new LRTLS sensor technology and are compared with the results from those achieved via the GB-InSAR, LRTLS and Total Station systems to determine the level of usability in active long-range mining situations.