Duan, W, Wesseloo, J & Potvin, Y 2015, 'Evaluation of the adjusted rockburst damage potential method for dynamic ground support selection in extreme rockburst conditions', in Y Potvin (ed.), Design Methods 2015: Proceedings of the International Seminar on Design Methods in Underground Mining, Australian Centre for Geomechanics, Perth, pp. 399-418, https://doi.org/10.36487/ACG_rep/1511_24_Duan (https://papers.acg.uwa.edu.au/p/1511_24_Duan/) Abstract: As modern underground mining progresses deeper, the elevated stress condition often translates to a greater seismic and rockburst hazard. The sudden and often violent failure of rock associated with rockbursts poses a significant threat to the safety and profitability of the operation. There is a wide range of practices and strategies for managing seismic and rockburst risks which are currently accepted and implemented in the mining industry. The rockburst damage risk, however, is currently managed, amongst other techniques, with the implementation of dynamically resistant support systems. The current engineering design of dynamic support systems for rockburst prone excavation is plagued with uncertainties and unknowns (Potvin & Wesseloo 2013b). Because of the complex nature of rockburst damage, an empirical approach of dynamic support selection is often preferred over a theoretical approach. The adjusted rockburst damage potential (RDP) method, re‐interpreted by Duan (2015) and based on the original RDP developed by Heal et al. (2006) and Heal (2010), is an empirical approach of dynamic support selection that utilises five rockburst damage contributing factors. In this paper, the adjusted empirical method was applied to two historic rockburst cases to assess its performance under extreme rockburst conditions. The study’s results, key findings and recommendations are presented in this paper.