Potvin, Y & Hadjigeorgiou, J 2015, 'Empirical ground support design of mine drives', in Y Potvin (ed.), Design Methods 2015: Proceedings of the International Seminar on Design Methods in Underground Mining, Australian Centre for Geomechanics, Perth, pp. 419-430, https://doi.org/10.36487/ACG_rep/1511_25_Potvin (https://papers.acg.uwa.edu.au/p/1511_25_Potvin/) Abstract: The majority of Australian and Canadian underground hard rock mines rely on the Norwegian Method of Tunnelling ground support recommendations for preliminary design recommendations. This is the case during the pre-feasibility and feasibility stages where the Q-system is used to select the support standards. This is usually accompanied by a limit equilibrium wedge analysis and rules of thumb. It follows that as the mine advances more geomechanical data becomes available, including rock exposures that allow for an update of the ground conditions and revision of the recommendations. As the mine develops, the ground support standards evolve further. At any given time, the implemented ground support systems for the different ground conditions are documented and updated in the mine’s ground control management plan (GCMP). This paper addresses some of the limitations of the Norwegian Method of Tunnelling as a ground support design tool for mining excavations. The results of a comprehensive review of GCMPs, successfully implemented in Australian and Canadian hard rock underground mines, are the basis of newly developed empirical guidelines calibrated to mining conditions and ground support.