Reyes, G, Hurtado, JP, Vargas, JP & Acuña, EI 2017, 'Computational fluid dynamic study of primary parallel fan stations', in M Hudyma & Y Potvin (eds), UMT 2017: Proceedings of the First International Conference on Underground Mining Technology, Australian Centre for Geomechanics, Perth, pp. 189-202, https://doi.org/10.36487/ACG_rep/1710_15_Hurtado (https://papers.acg.uwa.edu.au/p/1710_15_Hurtado/) Abstract: A computational fluid dynamic (CFD) study was developed considering primary parallel fan stations that are currently in operation within Chilean mines. A set of three station designs were considered, and the CFD modelling was used to simulate the operating points of the fan curves comparing operating performance in terms of airflow pressure and energy consumption. This approach allowed for the identification of the best primary fan configuration based on resistance curve and energy consumption relating to the fan station geometry. To standardise the comparison between the different stations, the same primary fan was used in all the simulations at the same fixed blade angle and speed setting. The simulation implemented the use of threedimensional models, based on two-dimensional prints, considering 7.2 × 7.2 m cross-section headings. Five resistance values were obtained reflecting the fan operating points; one for each geometry, which were then used to identify which model presented the best fan performance. This paper presents the results obtained through the CFD simulations and the corresponding operating points of primary fans. The results are discussed taking into account pressure, velocity and vector contours to understand the fluid dynamics phenomena occurring inside the station. The best-performing station geometry was identified based on the lowest frictional and shock pressure losses, highest airflow delivery and lowest energy cost. Keywords: parallel fan stations, computational fluid dynamic, underground ventilation design