Chester, C, Cuello, D & Basson, G 2018, 'Development and implementation of the Short Term Activity Tracker and Mine Control Trigger Response System', in Y Potvin & J Jakubec (eds), Caving 2018: Proceedings of the Fourth International Symposium on Block and Sublevel Caving, Australian Centre for Geomechanics, Perth, pp. 521-532, https://doi.org/10.36487/ACG_rep/1815_40_Chester (https://papers.acg.uwa.edu.au/p/1815_40_Chester/) Abstract: Seismic risk management at mining operations is predominately reliant on analysis and interpretation by ground control engineers, who must also manage all other mine site geotechnical hazards. Seismic systems run in real time collecting seismic parameters. However, the analysis, interpretation and resultant actions can be intermittent depending on available resources. Stress-induced seismicity during cave initiation and propagation is a constantly evolving hazard that requires a high level of continuous monitoring and examination. The authors have assisted in the development of integrated seismic monitoring and trigger response software applications within the Ticker3D seismic visualiser and analysis application, developed by the Institute of Mine Seismology (IMS). The benefits of the integrated applications include real-time monitoring of key seismic parameters and automatic trigger response, aiming to reduce workforce exposure to hazardous seismic conditions. Using measured ground motion as a monitoring input enables an almost immediate trigger response to a threshold breach via the Mine Control Trigger Response System. The continuity in seismic data interpretation and triggered mitigation controls are also recognised advantages to the applications. Keywords: seismic risk management, TARP, ground motion, Short Term Activity Tracker, seismicity, mitigation controls, exposure