Lowry, JBC & Saynor, MJ 2019, 'Developing a rehabilitation standard for landform stability for a uranium mine in northern Australia', in AB Fourie & M Tibbett (eds), Mine Closure 2019: Proceedings of the 13th International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 425-434, https://doi.org/10.36487/ACG_rep/1915_35_Lowry (https://papers.acg.uwa.edu.au/p/1915_35_Lowry/) Abstract: The rehabilitation works at the Ranger Uranium Mine (RUM) in the Northern Territory of Australia will be completed by 2026. As part of the process of mine closure and rehabilitation, the Supervising Scientist Branch of the Australian Government’s Department of the Environment and Energy have developed a series of rehabilitation standards which will be applied to the mine site. Here, we describe the rehabilitation standard for landform stability, which will be used to assess the rehabilitated landform. This standard aims to promote the development of a stable landform that functionally merges with the surrounding landscape. To this end, the standard identifies two primary objectives. The first seeks to ensure that buried tailings are not exposed to the environment for a period of at least 10,000 years, while the second seeks to ensure that the erosion characteristics of the constructed landform approach those of comparable landforms in surrounding undisturbed areas. We describe the background and scientific basis to these objectives, and the measures prescribed to attain them. This includes the use of landform evolution modelling technologies and the development and application of monitoring tools and regimes to monitor the evolution of the landform over time. Finally, we describe how the development of this standard complements the development of an ecological restoration standard for the RUM. While the standards have been developed for a specific mine, we believe the principles developed may be applicable to existing and future mine rehabilitation activities elsewhere. Keywords: rehabilitation standard, landform stability, erosion, modelling