Morkeh, J, Cefalo, J & Robertson, K 2020, 'Optimisation of crest blasting and excavation techniques for controlling spillover at Bingham Canyon Mine', in PM Dight (ed.), Slope Stability 2020: Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 1483-1494, https://doi.org/10.36487/ACG_repo/2025_102 (https://papers.acg.uwa.edu.au/p/2025_102_Morkeh/) Abstract: The height of the south wall at Bingham Canyon mine, running east to west, ranges between 100 m to 400 m tall. This wall, which is currently being mined down as part of the Slice 1 pushback, sits above the only haul road used to access the pit bottom – which hosts most of the mine’s ore. Consequently, rockfall from the operating mining level onto the haul road is a critical risk to the operation. Earlier reviews including rockfall simulations and rockfall barrier analysis work recommended implementing crest blasting procedures and mining with smaller hydraulic shovel to control spillover so that the rockfall control barrier on the haul road can continue to be effective. Initially, a conservative crest blasting technique was used to control spillover, however this approach posed challenges in the mining sequence and impacted overall productivity of the pushback. The blast designs and crest mining methodology were gradually adjusted following reviews of blast performance and monitoring data. This paper details the blasting-mining-spillover evaluation process and the subsequent mining operational changes that were made to improve production in the current pushback while controlling spillover. Keywords: spillover control, rockfall control, crest blasting, crest mining