Wu, AX, Jiang, GZ, Wang, YM & Ruan, ZE 2021, 'The development and practice of new quick-setting filling materials prepared by total industrial wastes', in AB Fourie & D Reid (eds), Paste 2021: Proceedings of the 24th International Conference on Paste, Thickened and Filtered Tailings, Australian Centre for Geomechanics, Perth, pp. 397-408, https://doi.org/10.36487/ACG_repo/2115_32 (https://papers.acg.uwa.edu.au/p/2115_32_Jiang/) Abstract: Traditional paste filling materials adopt industrial solid wastes such as unclassified tailings and waste rocks as filling aggregates, but the binder used is dominantly commercial cement, which raises the filling cost. Hemihydrate phosphogypsum (HPG) is one of the main by-products of the phosphorus chemical industry, and the high-efficiency utilisation technology of HPG has been a problem worldwide. The potential gelling property of HPG is found in the laboratory at first. It is then modified by appropriate chemical and physical methods to produce new filling binder with the purpose of replacing cement completely. A lot of experiments show that the modified HPG (MHPG) has outstanding properties of quick setting (setting time less than 90 minutes), high early strength (UCS for three days more than 8 MPa) and good flowability (yield stress less than 50 Pa). In addition, MHPG can bind different aggregates according to the filling needs to prepare a homogeneous, non-settling, and non-bleeding filling paste. In the past three years, two mines in Guizhou, China have adopted the underground paste backfill technology and surface open pit cemented filling technology based on MHPG paste materials. In practice, this new technology reduces the material cost by 30%, increases the flow capacity by 50%, and has a solid wastes rate of more than 98% compared to traditional methods. Keywords: new quick-setting filling materials, total industrial wastes, underground paste backfill, open pit cemented filling