Massey, CI & Palmer, N 2007, 'Monitoring Landslide Movement and Triggering Factors in Near Real-Time - Examples from Translational Landslides in New Zealand', in Y Potvin (ed.), Slope Stability 2007: Proceedings of the 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Australian Centre for Geomechanics, Perth, pp. 439-447, https://doi.org/10.36487/ACG_repo/708_29 (https://papers.acg.uwa.edu.au/p/708_29_Massey/) Abstract: The Taihape landslide covers approximately 45 hectares and contains over 200 households a primary school and a hospital. The Waikorora landslide covers approximately 6 hectares and is traversed by the Maui gas pipeline, which provides New Zealand with 80% of its gas requirements. Both landslides are currently active and are being monitored using a combination of field mapping, sub-surface investigation and near real-time monitoring of rainfall, ground-shaking intensity, groundwater levels and surface movement. Data from the landslides are being used to correlate different rates of surface movement to the triggering factors enabling movement triggering thresholds to be established. Until 2006, monitoring was carried out manually, with the monitoring frequency ranging from twice a year to once every five years. New monitoring equipment operating in a near real-time framework was installed in 2006. A key component are the surface movement monitoring systems which, at Taihape, comprises a laser survey network that automatically tracks, at defined (hourly) intervals, the positions of reflectors placed on the landslide; and at Waikorora, a series of continuous GPS receivers installed on the active landslide. These movement data, along with data from piezometers, rain gauges and strong motion accelerographs installed on the landslides are transmitted by radio and internet to a central hub where they can be viewed in near real-time. The greater temporal and spatial resolution of the monitoring networks allow movement triggering intensity/duration thresholds to be developed, which will allow alert levels, based on landslide movement to be set, once a better understanding of the movement patterns have been established.