Tyler, DB & Godden, SJ 2008, 'Geotechnical Modelling for Kimberlite Pipes', in Y Potvin, J Carter, A Dyskin & R Jeffrey (eds), SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics, Perth, pp. 551-564, https://doi.org/10.36487/ACG_repo/808_159 (https://papers.acg.uwa.edu.au/p/808_159_Tyler/) Abstract: EKATI Diamond Mine is located some 200 km south of the Arctic Circle and 300 km northeast of Yellowknife in the Northwest Territories of Canada. It is a remote fly-in-fly-out site with road access limited to the winter ice road season. The operation currently consists of two active open pits and two underground operations. Feed from the underground mines comprises high-grade material that is vital to the ongoing success of the EKATI operation. During the Koala Sublevel Caving feasibility study, indicative kriging was used as part of the geotechnical characterisation and modelling process, to aid in the assessment of kimberlite ground conditions, rock mass caveability and ground control requirements. This paper discusses the rational behind key areas of the rock mass characterisation program and how the geotechnical models were developed and verified.