Lecampion, B 2008, 'Crystallisation Preferred Orientation in Porous Media', in Y Potvin, J Carter, A Dyskin & R Jeffrey (eds), SHIRMS 2008: Proceedings of the First Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics, Perth, pp. 587-600, https://doi.org/10.36487/ACG_repo/808_96 (https://papers.acg.uwa.edu.au/p/808_96_Lecampion/) Abstract: The effects of non-hydrostatic stresses on the poro-mechanics of in-pore crystallisation are investigated. The consequences of the hypothesis of a purely hydrostatic state of stress in the crystals on their shape and orientation are derived from a diluted problem following Eshelby’s (1957) solution of an inhomogeneous inclusion in an infinite matrix. These results are used in a micro-mechanical scheme to estimate the macroscopic constitutive parameters. The preferred orientation and shape of the crystal, with respect to the stress field, induce a non-linear anisotropic dependence of the macroscopic constitutive parameters of the porous medium upon the stress state. The importance of such an induced anisotropy is explored for a given material as well as the effect of different boundary conditions on a unit volume of material undergoing crystal growth.