Authors: Belem, T; Fourie, AB; Fahey, M


Cite As:
Belem, T, Fourie, AB & Fahey, M 2010, 'Time-dependent failure criterion for cemented paste backfills', in R Jewell & AB Fourie (eds), Proceedings of the Thirteenth International Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, Perth, pp. 147-162.

Download citation as:   ris   bibtex   endnote   text   Zotero


Abstract:
In this paper, a simple time-dependent failure criterion has been proposed for cemented paste backfills. In addition to curing time, it allows to take into account the binder content that will be responsible for the material strength development. The properties described by this time-dependent criterion are those undrained since the backfilled mine stopes have been categorised as undrained in long term.

References:
Belem, T., Benzaazoua, M. and Bussière, B. (2000) Mechanical behaviour of cemented paste backfill, In Proceedings
53rd Canadian Geotechnical Conference, Montréal, pp. 373–380.
Belem, T., Harvey, A., Simon, R. and Aubertin, M. (2004) Measurement and prediction of internal stresses in an
underground opening during its filling with cemented fill, In Proceedings 5th International Symposium on
Ground support in Mining and Underground Construction, Australian Centre of Geomechanics, Perth, Australia,
pp. 619–630.
Underground and backfill applications
Paste 2010, Toronto, Canada 161
Belem, T., El Aatar, O., Bussière, B., Benzaazoua, M., Fall, M. and Yilmaz, E. (2006) Characterization of self-weight
consolidated paste backfill, In Proceedings Ninth International Seminar on Paste and Thickened Tailings,
R. Jewell, S. Lawson and P. Newman (eds), Australian Centre for Geomechanics, pp. 333–345.
Benzaazoua, M., Belem, T. and Jolette, D. (2000) Investigation de la stabilité chimique et son impact sur la résistance
mécanique des remblais cimentés, Rapport scientifique IRSST R-260, 158 p.
Bishop, A.W., Alpan, I., Blight, G.E. and Donald, I.B. (1960) Factors controlling the strength of partly saturated
cohesive soils, Conf. Shear Strength Cohesive Soils, American Society of Civil Engineers, New York,
pp. 503–532.
Cayouette, J. (2003) Optimization of the paste backfill plant at Louvicourt mine, CIM Bulletin, pp. 51–57.
Consoli, N.C., Rotta, G.V. and Prietto, P.D.M. (2006) Yielding-compressibility-strength relationship for an artificially
cemented soil cured under stress, Géotechnique, Vol. 56(1), pp. 69–72.
El Aatar, O. (2009) Étude de la consolidation des remblais miniers cimentés en colonnes, Thèse MScA. UQAT, 120 p.
Fahey M., Helinski M. and Fourie A. (2009). Some aspects of the mechanics of arching in backfilled stopes. Can.
Geotech. J. 46(11), pp. 1322–1336.
Fourie, A.B., Fahey, H. and Helinski, M. (2007) Using effective stress theory to characterize the behaviour of backfill,
CIM Bulletin, Vol. 100(1103), pp. 1–9.
Fourie, A., Helinski, M. and Fahey, M. (2006) Filling the gap – a geomechanics perspective, Australian Centre for
Geomechanics Newsletter 26, Perth, Australia, pp. 1–4.
Fredlund, D.G., Morgenstern, N.R. and Widger, R.A. (1978) The shear strength of unsaturated soils, Canadian
Geotechnical Journal, Vol. 15, pp. 313–321.
Godbout, J., Bussière, B., Aubertin, M. and Belem, T. (2007) Evolution of cemented paste backfill saturated hydraulic
conductivity at early curing time, In Proceedings 60th Canadian Geotechnical Conf., Canada, 17 p.
Grabinsky, M.W. and Bawden, W.F. (2007) In situ Measurements for Geomechanical Design of Cemented Paste
Backfill Systems, In Proceedings of Minefill 2007, Canadian Institute of Mining, Metallurgy and Petroleum
(CIM), Montréal, Canada, paper No. 2456 [CD-ROM].
Harvey, A. (2004) Étude comparative des contraintes triaxiales dans le remblai en pâte selon la portée des chantiers,
Mémoire de maîtrise ès sciences appliquées (génie minéral), École polytechnique Montréal, Canada, 136 p.
Hassani, F., Ouellet, J., Zhou, Z. and Roy, A. (2004) Paste backfill behaviour in a narrow vein mine: in situ stress and
strain monitoring, In Proceedings 8th International Symposium on Mining with Backfill, Nonferrous Metals
Society of China, Beijing, China, pp. 257–267.
Helinski, M., Fourie, A.B. and Fahey, M. (2006) Mechanics of early age cemented paste backfill, In Proceedings Ninth
International Seminar on Paste and Thickened Tailings, Ireland, Vol. 9, pp. 313−322.
Helinski, M., Fourie, A.B., Fahey, F. and Ismail, M. (2007a) Assessment of the self-desiccation process in cemented
mine backfills, Canadian Geotechnical Journal, Vol. 44(10), pp. 1148–1156.
Helinski, M., Fahey, H. and Fourie, A.B. (2007b) An effective stress approach to modelling mine backfilling, CIM
Bull., Vol. 100, No. 1103, pp. 1–8.
Helinski, M., Fahey, F. and Fourie, A.B. (2007c) Numerical modelling of cemented paste backfill deposition, Journal of
Geotechnical and Geoenvironmental Engineering, Vol. 13(10), pp. 1308–1319.
Ladd, C.C. and Foott, R. (1974) New design procedure for stability of soft clays, ASCE Journal of the Geotechnical
Engineering Division, Vol. 100 (GT7), pp. 763–786.
Lampron, S. (2000) Excavation d’une galerie à travers le remblai en pâte à la Mine Louvicourt, Compte rendu du 15e
Colloque en contrôle de terrain, Association minière du Québec, Val d’Or.
le Roux, K.A., Bawden, W.F. and Grabinsky, M.F. (2005) Field properties of cemented paste backfill at the Golden
Giant mine, Mining Technology: Trans. of the Institute of Mining and Metallurgy, Section A, Vol. 114(2),
pp. 65–80.
Li, L. and Aubertin, M. (2009) A three-dimensional analysis of the total and effective stresses in submerged backfilled
stopes, Geotechnical and Geological Engineering, Vol. 27(4), pp. 559–569.
Ouellet, J. and Servant, S. (2000) In situ mechanical characterization of paste backfill with a self-boring pressuremeter,
CIM Bulletin, Vol. 93(1042), pp. 110–115.
Rankine, R. and Sivakugan, N. (2007) Geotechnical properties of cemented paste backfill from Cannington Mine,
Australia, Geotechnical and Geological Engineering, Vol. 25(4), pp. 383–393.
Revell, M.B. (2004) Paste – how strong is it?, In Proceedings 8th Int. Symp. on Mining with Backfill, The Nonferrous
Metals Society of China, Beijing, China, pp. 286–294.
Rotta, G.V., Consoli, N.C., Prietto, P.D.M., Coop, M.R. and Graham, J. (2003) Isotropic yielding in an artificially
cemented soil cured under stress, Géotechnique, Vol. 53(5), pp. 493–501.
Simms, P. and Grabinsky, M. (2009). Direct measurement of matric suction in triaxial tests on early-age cemented paste
backfill. Can. Geotech. J. 46(1), pp. 93–101.
Skempton, A.W. (1960) Effective stress in soils, concrete and rocks, Pore Pressure and Suction in Soils, Butterworths,
London, pp. 4–16.
Time-dependent failure criterion for cemented paste backfills T. Belem et al.
162 Paste 2010, Toronto, Canada
Thakur, N. (2008) Characterization of Strength Properties of Columns-Consolidated Cemented Paste Backfill at
LaRonde Mine, Training Course Report, UQAT, 19 p.
Yilmaz, E., Belem, T., Bussière, B. and Benzaazoua, M. (2008) Consolidation characteristics of early age cemented
paste backfill, In Proceedings 61st Canadian Geotechnical Conference, Edmonton, Alberta, pp. 797–804.
Yilmaz, E., Benzaazoua, M., Belem, T. and Bussière, B. (2009) Effect of curing under pressure on compressive strength
development of cemented paste backfill, Minerals Engineering, Vol. 22(9-10), pp. 772–785.




© Copyright 2019, Australian Centre for Geomechanics (ACG), The University of Western Australia. All rights reserved.
Please direct any queries or error reports to repository-acg@uwa.edu.au