Authors: Klemm, S; Muehl, A; Koitzsch, Y; Gneist, F


DOI https://doi.org/10.36487/ACG_rep/1604_07_Klemm

Cite As:
Klemm, S, Muehl, A, Koitzsch, Y & Gneist, F 2016, 'Influence of damping parameters within a finite element model using the example of high energy impacts resulting from dynamic compaction', in PM Dight (ed.), APSSIM 2016: Proceedings of the First Asia Pacific Slope Stability in Mining Conference, Australian Centre for Geomechanics, Perth, pp. 169-181, https://doi.org/10.36487/ACG_rep/1604_07_Klemm

Download citation as:   ris   bibtex   endnote   text   Zotero


Abstract:
MIBRAG has planned a new mass distributor on a dump area for the extension of the Vereinigtes Schleenhain open pit mining area in Germany. This plan calls for densification by dynamic compaction to improve the bearing capacity of the in situ dump material. The densification is bordering on an outer slope and it was necessary to guarantee slope stability under the influence of high energy impacts that result from dynamic compaction. For this reason slope stability was analysed using constitutive models in conjunction with a hardening soil model employing small strain stiffness and hysteretic damping. This work included a study of the influence of all parameters that affect soil damping. For this purpose, a finite element (FE) model was used for calibrating the damping parameters with the aim to obtain a reasonable match of calculation results to measured field data. This paper will provide an outline of the project, present the findings of our study on the influence of damping parameters within the FE model and will give an overview of the analysis of slope stability under dynamic compaction.

Keywords: dynamic numerical analyses, dynamic compaction, falling weight densification, propagation of vibrations, damping parameters

References:
Alpan, I 1970, ‘Geotechnical properties of soils’, Earth-Science Reviews, vol. 6, pp. 5–49.
Benz, T 2007, ‘Small strain stiffness of soils and its numerical consequences’, PhD thesis, University of Stuttgart.
Benz, T, Schwab, R & Vermeer, PA 2006, ‘A small strain overlay model, I: model formulation’, International Journal for Numerical and Analytical Methods in Geomechanics.
Brinkgreve, RBJ, Kappert, MH & Bonnier, PG 2007, ‘Hysteretic damping in a small-strain stiffness model’, in Pande & Pietruszczak (eds), Numerical Models in Geomechanics, London.
Darendeli, MB 2001, ‘Development of a New Family of Normalized Modulus Reduction and Material Damping Curves’, PhD thesis, Department of Civil Engineering, The University of Texas at Austin.
Fellenius, WKA 1936, ‘Calculation of the Stability of Earth Dams’, in Transactions of the Second Congress on Large Dams, Washington DC, 4, pp. 445–462.
Geophysik GGD mbH 2010, ‘BV Ersatz der B 176, Dynamische Intensivverdichtung, Erschütterungsmessungen nach DIN 4150-3’, Leipzig.
Geophysik GGD mbH 2012, ‘Geotechnischer Bericht: Tagebau Vereinigtes Schleenhain, Abbaufeld Peres, Bauvorhaben Errichtung eines Massenverteilers, Dynamische Intensivverdichtung, Erschütterungsmessungen nach DIN 45669’, Leipzig.
Kirstein, JF & Krings, M 2012, ‘Dynamische Intensivverdichtung am Bestand - mehr als 30 Jahre Erfahrung - Schwingungsmessungen und neue Entwicklungen’, Tagungsband zur achten Erdbaufachtagung, Leipzig.
Schanz, T, Vermeer, PA & Bonnier, PG 1999, ‘Formulation and verification of the Hardening-Soil Model’, in RBJ Brinkgreve (ed.), Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam, pp. 281–290.




© Copyright 2024, Australian Centre for Geomechanics (ACG), The University of Western Australia. All rights reserved.
View copyright/legal information
Please direct any queries or error reports to repository-acg@uwa.edu.au