Authors: Cissé, M-K; Guittonny, M; Bussiere, B

Open access courtesy of:


Cite As:
Cissé, M-K, Guittonny, M & Bussiere, B 2022, 'Natural analogue of a cover with capillary barrier effects to improve the long-term performance evaluation and the design of the cover', in AB Fourie, M Tibbett & G Boggs (eds), Mine Closure 2022: Proceedings of the 15th International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, pp. 949-960,

Download citation as:   ris   bibtex   endnote   text   Zotero

To manage acid mine drainage, some mine sites in Québec, Canada, have been reclaimed using a cover with capillary barrier effects (CCBE). The performance of this oxygen barrier cover system relies on maintaining a fine-grained material layer with a high degree of water saturation. However, after mine closure, CCBEs can be colonised by the surrounding ecosystem (plants, animals, and microorganisms) that can influence its hydraulic properties. Plant roots, for instance, can pump water and decrease the degree of saturation in fine-grained materials. Since CCBEs are expected to perform for hundreds of years, their designs must anticipate long-term environmental changes. Projections of how a changing environment could influence CCBE performance are crucial. Current numerical models to predict water balance can integrate vegetation effects but long-term environmental changes, such as climate change, soil development, and ecological succession, are usually not considered. Model input data associated with future environmental scenarios at reclaimed sites are required. Natural analogues are natural ecosystems that provide clues for more effective cover designs or indicate long-term changes in cover environment. A natural analogue (NA) of a CCBE can help to obtain data representative of long-term environmental changes that may influence the CCBE performance. In this paper, the methodology used to obtain an NA of a CCBE, including the influence of mature vegetation, is presented. The criteria developed to check the analogy between a constructed CCBE, and a natural equivalent are explained (for example, the water table level, hydrogeological properties of materials, and the required contrast between these properties). An example of vegetation data obtained from the natural CCBE analogue is described. Finally, the benefits of using NAs information for the design of engineered cover systems are discussed.

Keywords: mine reclamation, cover with capillary barrier effects, natural analogue, mature jack pine, boreal ecosystem, root development, cover performance.

Albright, WH, Benson, CH & Waugh, WJ 2010, Water Balance Covers for Waste Containment: Principles and Practice, American Society of Civil Engineers, Reston.
Aubertin, M, Bussière, B & Bernier, L 2002, Environnement et Gestion des Rejets Miniers, manual on CD-ROM, Presses Internationales Polytechnique, Montréal.
Aubertin, M, Bussière, B, Pabst, T, James, M & Mbonimpa, M 2016, ‘Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal sites’, in D Zekkos, A Farid, A De, KR Reddy & N Yesiller (eds), Proceedings of Geo-Chicago, American Society of Civil Engineers, Reston, pp. 343–358.
Aubertin, M, Mbonimpa, M, Bussière, B & Chapuis, RP 2003, ‘A model to predict the water retention curve from basic geotechnical properties’, Canadian Geotechnical Journal, vol. 40, no. 6, pp. 1104–1122.
Aubertin, M, Pabst, T, Bussière, B, James, M, Mbonimpa, M, Benzaazoua, M & Maqsoud, A 2015, ‘Revue des meilleures pratiques de restauration des sites d’entreposage de rejets miniers générateurs de DMA’ (Review of best practices for remediation of AMD-generating mine waste disposal sites), Proceedings of the 2015 Symposium on Mines and the Environment, RouynNoranda.
Aubertin, M, Ricard, JF & Chapuis, RP 1998, ‘A predictive model for the water retention curve: Application to tailings from hard-rock mines’, Canadian Geotechnical Journal, vol. 35, no. 1, pp. 55–69.
Benson, AJ, McFarlane, GA, Allen, SE & Dower, JF 2002, ‘Changes in Pacific hake (Merluccius productus) migration patterns and juvenile growth related to the 1989 regime shift’, Canadian Journal of Fisheries and Aquatic Sciences, vol. 59, no. 12, pp. 1969–1979.
Bussière, B & Guittonny, M (eds) 2021, Hard rock mine reclamation: from prediction to management of acid mine drainage, CRC Press, Boca Raton.
Bussière, B, Aubertin, M & Chapuis, RP 2003, ‘The behavior of inclined covers used as oxygen barriers’, Canadian Geotechnical Journal, vol. 40, no. 3, pp. 512–535.
Bussière, B, Aubertin, M, Mbonimpa, M, Molson, JW & Chapuis, RP 2007, ‘Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials’, Canadian Geotechnical Journal, vol. 44, no. 3, pp. 245–265.
Bussière, B, Demers, I, Charron, P, Bossé, B, Roy, P, Jébrak, M & Trépanier, S 2017, Analyse de risque et de vulnérabilité liés aux changements climatiques pour le secteur minier Québécois (Climate change risk and vulnerability analysis for the Quebec mining sector), report submitted to MERN, 106 p.
Campagna, M 1996, Le cycle du carbone et la forêt: de la photosynthèse aux produits forestiers (The carbon cycle and forests: from photosynthesis to forest products), Direction de l’environnement forestier, Service de l’évaluation environnementale, Gouvernement du Québec, Québec.
Chapuis, RP & Aubertin, M 2003, ‘On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils’, Canadian Geotechnical Journal, vol. 40, no. 3, pp. 616–628.
Cloutier, V, Blanchette, D, Dallaire, PL, Nadeau, S, Rosa, E & Roy, M 2015, Projet d’acquisition de connaissances sur les eaux souterraines de l’Abitibi-Témiscamingue (partie 2), Rapport déposé au Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques dans le cadre du Programme d’acquisition de connaissances sur les eaux souterraines du Québec (Project to acquire knowledge on groundwater in Abitibi-Témiscamingue [part 2], Report submitted to the Ministère du Développement durable, de l'Environnement et de la Lutte contre les changements climatiques under the Quebec Groundwater Knowledge Program), research report.
De Silva, HN, Hall, AJ, Justin, DS & Gandar, PW 1999, ‘Analysis of distribution of root length density of apple trees on different dwarfing rootstocks’, Annals of Botany, vol. 83, pp. 335–345.
DeJong, J, Tibbett, M & Fourie, A 2015, ‘Geotechnical systems that evolve with ecological processes’, Environmental Earth Sciences, vol. 73, no. 3, pp. 1067–1082.
Demers, I & Pabst, T 2021, ‘Covers with capillary barrier effects’, in B Bussière & M Guittonny (eds), Hard Rock Mine Reclamation: From Prediction to Management of Acid Mine Drainage, CRC Press, Boca Raton.
Environnement Canada 1993, Normales climatiques au Canada: 1961–1990, Québec (Canadian Climate Normals: 1961-1990, Quebec), Environnement Canada, Service de l’environnement atmosphérique, Ottawa.
Guittonny, M, Bussière, B, Maqsoud, A, Proteau, A, Ben Khouya, T & Botula, YD 2019, ‘Colonisation racinaire dans les recouvrements miniers et impact sur leur fonctionnement’ (Root colonisation in mining covers systems and impact on their functioning), Proceedings of the Symposium of Mines and the Environment, Rouyn-Noranda.
Guittonny-Larchevêque, M & Lortie, S 2017, ‘Above- and Belowground development of a fast-growing willow planted in acidgenerating mine technosol’, Journal of Environmental Quality., vol. 46, pp. 1462–1471.
Mariaux, A 1967, Les cernes dans les bois tropicaux africains: nature et périodicité : peuvent-ils révéler l’âge des arbres? (Tree rings in African tropical woods: nature and periodicity, can they reveal the age of the trees?), Bois et Forêts, no. 113.
Mbonimpa, M, Aubertin, M, Chapuis, RP & Bussière, B 2002, ‘Practical pedotransfer functions for estimating the saturated hydraulic conductivity’, Geotechnical & Geological Engineering, vol. 20, no. 3, pp. 235–259.
Mbonimpa, M, Boulanger-Martel, V, Bussière, B & Maqsoud, A 2020, ‘Water, gas, and heat movement in cover materials’, in B Bussière & M Guittonny (eds), Hard Rock Mine Reclamation: From Prediction to Management Of Acid Mine Drainage, CRC Press, Boca Raton.
Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements climatiques 2017, Arbres et arbustes à utiliser pour la végétalisation des terrains réhabilités par analyse de risque (Trees and shrubs to be used for revegetation of reclaimed land by risk analysis), Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements climatiques, Québec.
Molson, J, Aubertin, M, Bussière, B & Benzaazoua, M 2008, ‘Geochemical transport modelling of drainage from experimental mine tailings cells covered by capillary barriers’, Applied Geochemistry, vol. 23, no. 1, pp. 1–24.
Morel-Seytoux, HJ 1992, L’effet de barrière capillaire à l’interface de deux couches de sol aux propriétés fort contrastées (The capillary barrier effect at the interface of two soil layers with very different properties), Hydrol. Continent, vol. 7, no. 2, pp. 117–128.
Morrison, IK, Foster, NW & Hazlett, PW 1993, ‘Carbon reserves, carbon cycling, and harvesting effects in three mature forest types in Canada’, New Zealand Journal of Forestry Science, vol. 23, no. 3, pp. 402–412.
Nastev, M & Aubertin, M 2000, ‘Hydrogeological modelling for the reclamation work at the Lorraine mine site Québec’, Proceedings of the 1st Joint IAH-CNC-CGS Groundwater Specialty Conference, American Society of Mining and Reclamation, Lexington.
Nicholson, RV, Gillham, RW, Cherry, JA & Reardon, EJ 1989, ‘Reduction of acid generation through the use of moisture-retaining cover layers as oxygen barriers’, Canadian Geotechnical Journal, vol. 26, pp. 1–8.
Peters, VS, Macdonald, SE & Dale, MR 2002, ‘NOTE Aging discrepancies of white spruce affect the interpretation of static age structure in boreal mixed woods’, Canadian Journal of Forest Research, vol. 32, no. 8, pp. 1496–1501.
Proteau, A, Guittonny, M, Bussière, B & Maqsoud, A 2020a, ‘Oxygen migration through a cover with capillary barrier effects colonised by roots’, Canadian Geotechnical Journal, vol. 57, no. 12, pp. 1903–1914.
Proteau, A, Guittonny, M, Bussière, B & Maqsoud, A 2020b, ‘Aboveground and belowground colonisation of vegetation on a 17-year-old cover with capillary barrier effect built on a boreal mine tailings storage facility’, Minerals, vol. 10, no. 8, p. 704.
Smirnova, E, Bussière, B, Tremblay, F & Bergeron, Y 2011, ‘Vegetation succession and impacts of biointrusion on covers used to limit acid mine drainage’, Journal of Environmental Quality, vol. 40, no. 1, pp. 133–143.
Viens, É 2001, Effets de l’éclaircie commerciale sur la croissance et la forme de la tige du pin gris (Pinus banksiana Lamb.) en Abitibi, Québec (Effects of commercial thinning on growth and stem shape of jack pine (Pinus banksiana Lamb.) in Abitibi, Québec), Université du Québec à Chicoutimi, Québec.
Waugh, W, Petersen, K, Link, S, Bjornstad, B & Gee, G 1994, ‘Natural analogs of the long-term performance of engineered covers’, in G Gee & N Wing (eds), In-Situ Remediation: Scientific Basis For Current And Future Technologies, Battelle Press, Columbus, pp. 379–409.

© Copyright 2024, Australian Centre for Geomechanics (ACG), The University of Western Australia. All rights reserved.
View copyright/legal information
Please direct any queries or error reports to